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Abstract. 

Measurements of the unsteady forces on heaving delta wing 

hydrofoils having apey angles of 15    and 30   were carried out in fully 

wetted flow, planing at a free surface, and with forced ventilation.    The 

fully wetted dynamic measurements were in good agreement with the 

results of lifting surface theory at small angles of attack.    A slender 

hody theory of planing due originally to Tulin is extended to account for 

non-steady motions.    This theory generally underestimates the in-phase 

lift force,  the quadrature unsteady lift is well predicted by the theory. 

Additional measurements of steady planing delta wings were carried out; 

for small apex angles and small angles of attack the theory is found to 

be adequate though it does appear to underestimate the lift somewhat. 

Some additional experiments on non-steady forces on two-dimensional 

fully wetted and fully cavitating hydrofoils were also carried out. 
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I.    Introductio.i. 

The present report is concerned with the fluctuating forces that 

act on hydrofoils in non-steady motions.    There are many practical 

reasons for interest in this subject; most of these stem from the prob- 

lems of developing high speed surface ship components.    A recent 

monograph (Ref. 1) summarizes much of the work in non-steady hydro- 

dynamics;  it includes a survey of current theoretical efforts in 

hydroelasticity, non-steady liftins «urface theory and some supporting 

experimental work.    The latter, though,  like its aerodynamic counter- 

part is rather sparse.    The present work is intended mainly to supplement 

this experimental work for configurations not previously investigated to 

any great degree,  in order to prov'de this information for its own sa'ce 

and to call attention to situations where presently available theoretical 

models are not adequate or have not been applied.    In this respect,  it is 

a continuation of the work in Refs. 2 and 3 wherein unsteady hydrodynamic 

data were obtained for two-dimensional and finite aspect ratio hydrofoils 

in heaving motion in fully wetted flow and forced-ventilation flow.    Similar 

studies are reported herein on delta wings in fully wetted flow,  in a plan- 

ing configuration and also in forced-ventilation flows;  in addition some 

work on fully wetted and naturally cavitating two-dimensional hydrofoils 

in heaving motion is presented and compared with existing calculations; 

it will be seen that at present, at least for the configurations studied, 

these theories do not entirely account for ihs observations. 

In the following text some of the background work in delta wings 

is touched upon and more details of the experimental program are 



outlined.    These experimental results, together with descriptions of the 

lest apparatus and experimental procedures are then described.    The 

appendix contains a quasi-steady theory of non-steady planing of delta 

wings that was devised in an attempt to explain the observatioas. 

Previous Investigations. 

The interest in triangular lifting surfaces hardly needs 

justification.    They are common in aeronautics.    For background we will 

now review from the work of persons whose primary interest was moti- 

vated by aeronautical considerations some of these prior "fully wetted" 

flow studies.    First, as was mentioned by Smith (4), the effect of 

Reynolds number on the general features of the flow about sharp edged 

delta wings is small, and for this reason we are not primarily concerned 

with viscous effects here provided the Reynolds number is moderately 

high.    The salient feature of a slender delta wing is that the Kutta condi- 

tion is satisfied along the lateral edges of the wing.    The shed vorticity 

then gives rise to a longitudinal vortex springing from the apex of the 

wing and passing downstream near the leading edge.    The flow at the 

leading edge itself streams smoothly off the surface and becomes en- 

trained into the vortex.    In a sense,  the leading edge may be said to be 

separated.    Prior to the interest in flows about delta wings with leading 

edge separation R.  T.   Jones (5) presented a method for calculating the 

force on such slender bodies at a small angle of attack.    Jones' contri- 

bution was to show that for slender bodies the analysis could be carried 

out in a plane perpendicular to the main flow and thus to solve a iwo- 

dimensional problem.    The cross-flow plane solution used jy him 
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was that of a flat lamina moving normally to itself in potential flow.   The 

infinite velocities at the lateral edges in this model clearly do not exist 

in the actual case.    Jones' analysis is, however,  satisfactory for slen- 

der delta wings at small angles 01 attack and his result is often called 

the linear contribution since it predicts the force to be linear with angle 

of attack. 

Subsequent experimental investigations,  particularly by Roy (b), 

caused interest in finding a model which represented the observed flow 

especially the smooth outflow condition at the leading edges.    Legendre 

(7) proposed the addition of two vortices above and inboard of the two 

leading edges.    The strength and position of the vortices would be deter- 

mined by the smooth outflow condition at the leading edges with the 

condition that the vortices have no net force on them.    The two vortices 

were implicitly assumed to be joined by a cut so that the lift on the foil 

or foil-vortex system would be uniquely determined. 

Following a suggestion by Adams (8),  Legendre modified the 

model with the vortices being joined to their respective leading edges by 

cuts rather than to each other.    This had the advantage that the cut could 

be interpreted physically as a vortex sheet feeding the primary vortex. 

His force condition was still on the vortex which meant that the lift on 

the foil depended on whether the forces or the cuts were included or not. 

Brown and Michael (9) proposed a model,  anticipated by Edwards (10), 

which placed the zero force condition at each vortex on the cut as well. 

That is,  the net force on the vortex and cut taken together should be zero. 

The ambiguity in the lift calculation was then removed.    The Brown and 

Michael model has served as a basis for a number of other investigations. 
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It has the advantage of basic simplicity and it reasonably represents the 

flow picture.    It does not, however, predict the forces very well, being 

somewhat too high.    The stability derivatives are likewise poorly 

predicted. 

Trying to develop a model which was even closer to the physical 

flow and one which would better pr- diet the forces.  Mangier and 

Smith (11) proposed a model with the flow separated from the leading 

edge in the form of a spiral vortex sheet.    Somewhat better agreement 

with experimental data was obtained than with tike Brown and Michael 

model.    It has the disadvantage that the added complexity requires that 

the problem be solved on a digital computer.    Smith (4) has recently 

published some further calculations using this model.    These are used 

in the discussion of the experimental results to follow. 

Apart from the foregoing studies,  Gersten (12) presented a 

method of calculating the stability derivatives for triangular wings. 

Gersten's method is basically one of lifting surface theory.    It has the 

advantage that it predicts the forces fairly well but the trailing vortex 

field of his lifting surface theory does not physically resemble the actual 

flow. 

These are the major efforts to predict the steady forces on 

fully wetted delta wings.    There have been other studies of the vortex 

structure and some flow visualization studies,  particularly Marsden, 

et al.   (13), but these are the models from which most current work 

extends.    The studies in this arta are currently active as will be noted 

by Kiichemann's (14) report on the  1964 I. U. T. A. M.   symposium held at 

Ann Arbor,  Michigan.    Several of the papers,  notably (15),   (16) and 
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(17), presented at this symposium have since been published in volume 

seven of Progress in Aeronautical Science.    Also the work of Garner 

and Lehrian (18) is notable but is really derived from Gerstens. 

In the area of unsteady loads on non-stationary delta wings Jones' 

idea was discussed by Miles (19) and Garrick (20) for the linear prob- 

lem.    The unsteady problem with leading edge separation has been 

treated by Randall (21) who used the Brown and Michael model to calcu- 

late the force on a slender delta wing performing infinitesimal heaving 

oscillations.    Lowson (22) and later Maltby (23) used the same model 

for a slender delta wing performing finite heaving oscillations.    The 

advisability of using this model for unsteady forces seems questionable 

in view of the not too good agreement with steady experiments,  but their 

interest in this problem seemed to be primarily in the vortex position 

rather than forces.    Due to the computational difficulties no extension of 

the more realistic Mangier-Smith model has been made to unsteady flows 

but it would undoubtedly give     ipe/ior force predictions. 

Finally we mention the investigations of the forces on delta wings 

oscillating in heave by Lawrence and Gerber (24).    They used lifting 

surface theory to calculate the effect of reduced frequency on the unsteady 

forces on some rectangular and delta wings.    The theory is limited to 

vanishingly small angles of attack,  not a very practical case, but gives 

surprisingly good correlation within the bounds of the theory. 

The other two types of flow investigated herein are unique to 

hydrodynamics,  therefore no aeronautically inspired results will be 

available.    The second flow type (i. e. , ventilated or cavitating) has 

received but slight treatment for delta wings.    We know only of the 
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theoretical work of Tulin (25) and later Kaplan (26) who used a combina- 

tion of slender body and linearized free streamline theory to treat the 

case of partial cavities on delta wings.    Later,  Cumberbatch and Wu (27) 

undertook a non-linear analysis of a fully cavitating delta wing — again, 

however, using a slender body approach.    Supporting experimental 

work is very limited and for the cavitating case only Peichardt and 

Sattler's work (28) is known while Kiceniuk (29) undertook measurements 

of the fully ventilating (or cavitating) case.    We are unaware of any 

theoretical or experimental work on non-steady cavity flows for these 

configurations. 

The situation for planing flows is somewhat different.    There 

exists a considerable literature for steady  planing of prismatic hulls in 

steady flows and there is some work on the water impact problem of 

hydro-skis and the like.    Most of the low aspect ratio planing surface 

theory is, however,  semi-empirical.    The one notable exception which 

deals with steady planing delta wings is a theory presented by Tulin (30) 

on the planing of slender bodies at small angles of attack.    This theory 

is reconsidered in Appendix II and is extended to include quasi-steady 

heaving motions of the hydrofoil.    As a general remark the problem of 

unsteady planing has received very little attention; the major effort in 

the past has gone toward predicting impact loads on hydro-skis attached 

to aircraft.    The whole subject appears to need extensive study. 

Present Investigations. 

As indicated above the emphasis of the present report is on the 

forces experienced by delta wing hydrofoils oscillating in a heaving 



motion;  no investigations into the motions of the separated leading edge 

vortex core were undertaken.    Though most of the present experimental 

work was carried out with this type of fo:lf additional work on two- 

dimensional foils was carried out but discussion of these tests will be 

deferred for the moment. 

To investigate the dynamic properties of heaving delta wings, 

two apex angles,   15    and 30  , were chosen.    It was also decided to 

carry out additional steady measurements and for this purpose an addi- 

tional set of model wings having apex angles of 10  ,   15  ,  30  , 45    and 

60   and a different chord length than the dynamic models was obtained. 

(The different chord length made it possible to check independently the 

effect of Froude number.)   In the dynamic tests,  the models were 

oscillated in heave at different angles of attack,  free stream velocity, 

oscillation frequency, and oscillation amplitude.    The depth of submer- 

gence was also varied for the fully wetted tests.    Measurements were 

made of the unsteady lift and drag forces and pitching moment.    With 

this many parameters to consider, the data gathering and processing 

was quite time-consuming, but the lack of availability of data on these 

effects made the work seem that much more worthwhile. 

The data gathered for the ventilated delta wings were limited 

because of the additional parameter to be varied, cavity length, and 

because during the course of the experiments it was learned that the 

15    delta wing would not ventilate properly.    It was felt that the influence 

of the ventilation strut on the flow field over the 15    model was the cause 

of the problem.    It was decided therefore that data would be taken only 

for the 30   model,  and for economy only one angle of attack (a = 20 ), 

one submergence depth (D = 0.83 chords) and one oscillation amplitude. 
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The added parameter of cavity length and the associated 

parameters of air supply rate and ventilation number cause the data 

gathering to still be a fairly large task especially since in all the inves- 

tigations reported herein the experiment essentially had to be run twice, 

once with the lift and pitching moment balance and once with the drag 

balance.    Pitching moment data are not reported for the ventilation tests 

because the data from both balances are required to calculate the pitching 

moment about a point on the model and the data were found to be so sensi- 

tive to cavity length that data at the exact conditions of the "lift"  runs 

were not gathered for drag.    Instead the drag data are for slightly dif- 

ferent conditions. 

Both the 15    and 30    models were used in the dynamic planing 

experiments.    They were run at mean angles of attack of 6    and 12  . 

Since the forces are smaller for a planing body than for a fully wetted 

one the tunnel velocity was run as high as practical (i. e. .   U = 22 ft/sec) 

to provide larger signals.    The desire to provide large force signals for 

measurement was thwarted somewhat because if the model was allowed 

to perform large displacements during an oscillation cycle it would be 

subject to a large wetted area change or it might become submerged 

during part of the cycle.    This second effect,   referred to here as part- 

cycH-planing,   can cause as will be seen drastic changes in the unsteady 

forces.    For these reasons,  the oscillation displacement was usually 

kept as low as practical during the dynamic planing tjsts,   although this 

does mitigate against accuracy. 

In the following sections,  the experimental apparatus and test 

procedure is covered at some length.    Then follows a rather extensive 

i 



-9- 

presentation of the results of the delta wing investigations in the various 

■ 

types of flow studied.    We then give a brief report on the two-dimensional 

fully wetted and cavitating tests. 

II.    Experimental Apparatus. 

Free Surface Water Tunnel. 

The experimental work on the delta wings oscillating in heave 

was conducted in the Free Surface Water Tunnel at the California 

Institute of Technology.    Reference (31) describes the tunnel in consi- 

derable detail so only its major features will be discussed here.    It is 

a closed   oop,   recirculating tunnel with a useable working section 

approximately 20 inches by 20 inches in cross section and about eight 

feet long.    The distinguishing feature of the working section is that the 

upper surface is open to the a^iosphere which enables the tunnel to be 

used for planing and near-surface tests. 

The maximum velocity attainable in the working section is about 

25 feet per second.    This velocity is indicated on a water manometer 

which gives the difference between the total head upstream from the 

nozzle and the static head in the static head in the working section.    A 

feature of the tunnel which was added after it was built and consequently 

is not discussed in Ref. (31) is the skimmer.    Its function is to remove 

the fluid decelerated in the boundary layer on the upper surface on the 

nozzle.    This fluid is added back into the circuit downstream of the 

working section.    The result is that the velocity profile of the flow in 

the working section is constant near the free surface,  allowing   neaning- 

ful planing tests to be performed.    There are of course boundary layers 
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on the bottom and side walls of the working section but these do not 

ordinarily interfere with the experiment.    Figure 1 presents an overall 

view of the working section and test equipment. 

Hydraulic Pump and Oscillator. 

The dynamic models were made to oscillate hydraulically.    A 

Dennison variable displacement pump supplied oil at 1250 psi to a servo- 

controlled double-acting piston which in turn caused the excitation of the 

foil.    These details are shown schematically in Fig. 2.    The servo valve 

and piston were designed and built by Team Corporation of El Monte, 

California.    Not pointed out in the figures are the position and velocity 

transducers which sense the motion of the piston and provide feedback 

information to the servo controller.    The position transducer is a linear 

variable differential transformer (LVDT) and the velocity transducer is 

a conventional type linear voltage generator. 

Servo Controller. 

The motion of the piston is controlled by a servo-amplifier which 

minimizes the velocity error of the piston through conventional feedback 

principles.    It was designed and built by the McFadden Electronics 

Company of South Gate,  California,  and is Model "iOA. 

Models and Attachment Fixtures. 

The dynamic models,   shown in Fig. 3,  are two sharp-edged delta 

wings with apex angles of 15    and 30  .    They were fabricated from one- 

quarter inch aluminum plate and are both approximately one foot in length. 

Their bottom sides are both flat and a two-stage bevel,   rounded by hand. 
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was used on the top.    This produced quite sharp edges.    The effect of 

camber is negligible particularly in light of the leading edge separation 

which occurs in all three types of flow (i. e. ,  planing,  fully wetted and 

ventilated).    Provision for running different angles of attack was accom- 

plished through spacers placed between the model and the force balance. 

This assures a simple rigid system in which the angle can be reset at 

sill.    It does not have the flexibility of a continuously variable device, 

but has proved very workable here. 

Instrumentation. 

1.    Lift and Pitching Moment Balance. 

The measurement of the unsteady lift and pitching moment forces 

was accomplished by a strain gage strut balance.    That is,  the balance 

is an extension of the support strut.    The placement of the balance is 

shown in Fig. 2.    The balance was constructed so that the lift and pitch- 

ing moment force would be taken out through two longitudinally spaced 

vertical links.    The drag force was taken out by one horizontal link.    On 

each of these primary load-canying links was attached a conventional 

wire strain gage bridge.    By summing the forces in the two vertical 

links the lift is obtained;  by differencing them the pitching moment is 

obtained.    It was found in static tests after the balance was constructed 

that the drag eiement had an unacceptable amount of roll moment inter- 

action and consequently this balance was not used for drag measurements 

but rather a new one was designed.    It is described in some detail in the 

next section. 

The lift and pitching moment balance is shown in Fig. 4 before the 

installation of the strain gages.    The wires for the bridges pass through 
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a hole in the top of the balance,  up through the center of the support 

strut and piston to a connector at the top of the oscillator.    After the 

installation of the strain gages metal plates were soldered to the sides 

of the balance for mechanical protection and to provide support for the 

waterproofing which consisted of thin sheets of latex cemented around 

the outside of the balance.    The balance was slightly pressurized via 

the hole carrying the wires to prevent water from entering the balance 

in the event of a !aak. 

The balance is fairly rigid having no natural frequencies below 

200 cps,  but a dynamic calibration of both lift and pitching moment was 

provided at each of the operating frequencies to obviate the effect of a 

dynamic magnification factor.    The calibration is discussed in more 

detail later. 

2.    Drag Balance. 

As was mentioned the existing balance was found to be unacceptable 

for drdg measurements due to interactions.    As dynamic drag measure- 

ments are quite scarce a new balance was designed to measure drag only 

with the hope of isolating all other forces and moments and eliminating 

all interactions.    The final balance showed in extensive static tests that it 

did just that to the least count of our equipment. 

The balance is shown in Fig.   5.    It consists of two overlapping 

side plates which are about 0.2 inch thick and very rigid,   one of which is 

attached to the support strut and the other to the model.    The side plates 

are connected to each other in turn by a system of flexures and an instru- 

mented link to measure the drag force.     (This drag link is not visible in 

Fig. 5.) 
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The flexure system consists of four thin metal sheets lyin^ in 

two vertical transverse planes.    Each flexure is 0,8 inch high,  0.005 inch 

thick and 0.2 inch in the lateral direction.    They were cut from theet 

stock and furnace brazed in position.    They carry all loads except drag 

for which they are comparatively flexible.    The instrumented link carries 

most of the drag force;  it is a flat bar approximately 0.3 inch high, 

3 inches overall length and 0.050 inch thick except in the central instru- 

mented portion where it is 0.030 inch thick.    It is attached at the front to 

the grounded side and at the back to the model side.    Thus,  a drag force 

puts the link in tension.    Small "cut-outs"  in two perpendicular planes 

were machined into the link at each end just inboard of the attachment 

position to prevent any displacements due to lift force,  pitching or roll- 

ing moments from causing any unwanted interaction. 

The strain gages are of the solid state type; tv/o are the P type 

and two the N type, which not only give high gage factors but also four 

active gages in a pure tension or compression member. Their place- 

ment on the gaged section was further planned to cancel any moments 

which might creep in. Temperature compensation is also provided by 

gage matching but that is of little importance in this application. 

Because the gages could not be in place during the brazing 

operation the balance was designed so that the drag link could be inserted 

through an opening in the trailing edge after brazing and fastened in place 

by dowel pins and cap screws through access holes in the side pieces. 

The opening in the trailing edge was filled with a brass plug to provide 

support for the waterproofing.    This has the add«;d advantage of easing 

maintenance should the gage fail.    Waterproofing is provided as on the 

lift balance by thin latex sheets cemented to the outside of the balance. 
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The balance was designed so that it is very rigid in all directions; 

in the drag direction its natural frequency is above 600 cps with a model 

attached.    The balance therefore could be calibrated statically and the 

same factor used at all frequencies. 

3. Voltage Supplies and Amplifiers. 

Figure 6 will be helpful in showing how the electronic equipment 

is patched together.    The excitation voltages for the strain ga?e bridges 

were provided by a Microdot Power and Balance Unit PB-2Ö0A for each. 

They have provision for patching resistors on a conditioning board to 

approximately balance the bridge.    A potentiometer was also provided 

for balance which was useful for nulling the steady load.    Each unit con- 

tained a potentiometer for setting the excitation voltage.    A Microdot 

Voltage and Balance Monitor VB-300 was used to monitor the excitation 

voltages and to null the bridge output during steady operation. 

The output of the strain gage bridges was fed through a series of 

Burr-Brown Model 1685 amplifiers.    In the lift-pitching moment balance 

the outputs were summed and differenced in the first two amplifiers to 

produce lift and pitching moment.    These outputs went to a selector 

switch so that only the signal being analyzed would be fed to two other 

amplifiers connected in series.    The total gain was then 1000. 

4. Return Signal Analyzer. 

The force signals and heaving velocity signals were analyzed in 

Boonshaft and Fuchs Model 711A Retarn Signal Analyzer (RSA).    The 

signal being analyzed is compared internally to a signal of the same 

frequency as the command signal.    A Fourier analysis is performed 
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electronically and the components having the same frequency as the 

exciting frequency can be read out on panel meters or on an auxiliary 

voltmeter. 

5. Variable Phase Low Frequency Oscillator. 

The command signal which was fed to the servo controller was 

generated by a Boonshaft and Fuchs Model 711AP Variable Phase Low 

Frequency Osollator (VPLFO).    This has two outputs;  one was fed into 

the servo controller,  the other is also tied internally to the RSA.    By 

varying the phase of the command signal whue analyzing the output of 

the velocity transducer a velocity reference for the force signals can be 

obtained. 

6. Digital Voltmeter. 

The output of the RSA was connected to a Non-Linear Systems 

Series 2900 Digital Voltmeter.    This is an integrating meter and the 

integrating times most frequently used were one and ten seconds,  the 

latter used if the data were unsteady. 

7. Position and Velocity Transducers. 

The position and velocity transducers were mentioned earlier. 

The primary functions of the position transducer were to aid in the cali- 

bration of the velocity transducer and to provide static height stability in 

the servo controller.    The velocity transducer provided the phase refer- 

ence for the force data and was also used in the normalization of the forces. 

Support and Ventilation Struts. 

The support strut tying the model and force balance to the piston 

of the oscillator is a NACA 0010 section of 10 percent thickness and 
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4 inch chord.    It was designed to minimize ventilation from the free 

surface.    The force balances had similar contours to continue the strut 

profile to the model.    The angle changing spacers were also contoured 

similarly. 

For the ventilation tests a means was needed to provide a known 

quantity of air at the suction side of the foil without otherwise interfering 

with the flow.    The method finally chr   en was a hollow bi-convex strut 

fabricated from two sheets of aluminum 0. 040 inch thick rolled into 

cylindrical sections which were subsequently heli-arc welded at the lead- 

ing and trailing edges.    This was slipped over the support strut and 

attached to it above the balance.    A means was provided to seal the upper 

end and air supply and pressure fittings were provided. 

Ventilation Measuring Apparatus. 

1. Air Supply Measurement. 

The air supplied to the cavity during the ventilating runs was 

measured by a Fischer-Porter Flowmeter and the supply pressure was 

measured on a Heise Bordon tube pressure gage.    The reduction of the 

data is discussed later. 

2. Cavity Length Measurement. 

The cavity length was measured with a tape rule held against the 

working section side.    This method probably is not accurate to less than 

an inch but considering the difficulty in defining the termination point for 

the cavity this accuracy was quite acceptable. 

3. Cavity Pressure Measurement. 

The cavity pressure was measured by a water-filled U-tube 

manometer open to the atmosphere on one end and connected to the top 

■•*«i*, 



-17- 

of the ventilation strut on the other.    There was a pressure drop from 

the point of measurement to the cavity which was accounted for by run- 

ning tests with the tunnel dry.    This allowed the pressure drop which is 

a function of the air supply rate to be subtracted out. 

III.    Experimental Procedure. 

Calibrations. 

1. Position Transducer. 

The position transducer was calibrated using a microscope 

attached to a lead screw and counter.    The lead screw and counter were 

geared together so that the counter read directly in thousandths of an 

inch.    The microscope could be set with the cross hairs aligned to a 

mark on the oscillator shaft;  a number of position and voltage readings 

would then be made and the data least squares fit with a cubic polynomial. 

The linear term is the only one which is used since over the range 

covered in the velocity transducer calibration only the linear term is 

important. 

2. Velocity Transducer. 

The velocity transducer was calibrated using the position 

transducer since the -.notion was simpls harmonic.    At each of the fre- 

quencies used in the experiment the velocity and position signals were 

analyzed using the Return Signal Analyzer.    Since for simple harmonic 

motion the velocity amplitude is just the angular frequency times the 

position amplitude,  and since we know the position calibration factor, 

we can then infer the velocity calibration factor. 
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3. Lift and Pitching Moment Balance. 

The lift and pitching moment balance was calibrated both 

statically and dynamically.    Static tests were run to determine the 

electrical position of each of the force links and the excitation voltages 

were chosen so that both of the lift gages (N. and N2) had the same 

output/unit force.    This must be done,  otherwise the balance will have 

a lift-pitching moment interaction. 

The dynamic calibrations were done at each frequency because 

even though the balance's natural frequency was well above those used 

in the experiment this afforded an easy way to obviate errors due to 

dynamic response.    A two piece calibration mass was fabricated speci- 

fically for this task.    The upper part, made of aluminum, was bolted to 

the strut at the model attachment holes.    The bottom part,  much heavier 

and fabricated of brass, was made so that it could be attached to the 

aluminum bar at any of six different positions to vary the longitudinal 

center of gravity of the total live mass.    Using Newton's second law and 

the characteristics of simple harmonic motion the forces were inferred 

from knowing the mass and the velocity transducer output.    By oscillating 

the mass at two different longitudinal positions (generally the end ones) 

the pitching monnent calibration coefficients and the longitudinal electri- 

cal center were determined.    This also allowed a check on the sensitivity 

of lift to pitching moment changes. 

4. Drag Balance. 

The drag balance presented a much easier calibration problem. 

Because of its designed-in constant response over the test frequency 

range the calibration could be and was done statically.    This consisted 
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of bolting a fixture to the bottom of the balance and running a line from 

this fixture over a pulley to a hook on which shot-bags could be hung. 

The problem of assuring that the line was pulling in the drag direction 

was handled by levels on both the fixture and the line.    Having only one 

load-carrying element in the drag direction no matching of outputs was 

required as in the "lift" balance, therefore the excitation voltage was 

changed to maintain a fixed calibration coefficient over the period of 

drag testing. 

As a check for whipping of the strut the balance was oscillated 

with the tunr el dry and no sensible drag output was noted. 

5. Return Signal Analyzer. 

The manner in which the force coefficients were normalized 

meant that the Return Signal Analyzer processed a signal in the denom- 

inator as well as the numerator.    This means that an absolute calibration 

was not required (in fact,  it was checked against an rms voltmeter and 

appeared to he within two percent of scale) but only variations from scale 

to scale.    These relative coefficients were obtained using a signal from 

the Velocity Phase Low Frequency Oscillator and leap-frogging from 

scale to scale.    Except for the two lowest scales they were within one 

percent of the ratio of scales so even that had they not been accounted for, 

and they were,  the effect would hardly have been noticed. 

6. Air bvpply Apparatus. 

The vc-ntilation tests required that three additional pieces of 

apparatus be calibrated.    They are a flow meter,  a supply pressure gage 

and in this case we also had to account for the pressure drop in the 

ventilation strut. 
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The flow meter was a Fischer-Porter product with tube 

No. FP-3/4-27-G-10/80 for which a calibration curve was provided by 

the manufacturer.    It was double-checked against another flow meter 

which had been previously calibrated and was within the five percent 

tolerance,  over the working range, that these instruments are good for. 

The supply pressure, which exceeded 70 psi at the flow meter, 

was measured by a Heise gage No. H1665.    This gage was checked with 

a dead weight tester and found to be within 0.1 psi from zero to ninety- 
f 

five psi.    This was the accuracy to which the gage could be read. 

The cavity pressure was given by a water manometer less the 

pressure drop in the ventilation strut.    This pressure drop was accounted 

for by running various air supply rates through the strut with the tunnel 

dry and calculating the relationship between pressure drop and mass 

flow rate.    This drop was then subtracted from the apparent cavity pres- 

sure in the final data reduction. 

Parameters Investigated. 

There are basically 3ix parameters whose influenc«; on the force 

coefficients was investigated.    They are angle of attack,  aspect ratio, 

reduced frequency,   submergence,  oscillation amplitude and air supply 

rate.    Not all combinations of the parameters   /ere run due to th-» time 

involved,  however representative checks were made where it was felt 

appropriate. 

The basic angles of attack which were investigated varied 

depending on the type of flow.    For instance,   in the fully wetted runs 

angles of zero,  six and twelve degrees were run for each of the sub- 

mergences.    The planing runs,   however, were done only at six and 
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twclve degrees since proper planing cannot be established at zero degrees. 

The ventilated runs were performed at twenty degrees angle of attack 

because this is near the lowest angle that the model could be fully venti- 

lated under the test conditions. 

In addition to the basic data runs,  tests were done at minus six 

and minus twelve degrees with the model fully wetted and at the deepest 

submergence.    This was done to give some justification to the assump- 

tions that the camber and strut effects were small. 

Two different models were used.    They were both fabricated 

from 0. 250 inch aluminum plate and have sharp edges all around to 

insure flow separation.    Both models were approximately one foot in 

length and had apex angles of 15 and 30 degrees.    The aspect ratio of 

these two models is 0.526 and 1.071 respectively. 

One of the most varied parameters in the tests was the reduced 

frequency.    In all of the runs except the ventilation tests the reduced 

frequency was the one varied,  by means of the frequency,  having fixed 

the other variables.    In addition to the fundamental influence of the 

reduced frequency on the force coefficients,   various tunnel velocities 

were run to determine the effect of obtaining the reduced frequency by 

different frequency-velocity combinations.    This was done only at an 

angle of attack of twelve degrees,   30    model and at maximum submer- 

gence since this was thought to provide the severest test. 

The effect of the free surface was investigated in the fully wetted 

tests by running the models at approximately two,   six and ten inches 

submergence.    These large submergence changes were accomplished by 

inserting spacers between the box holding the hydraulic oscillator and 

the tunnel. 
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For the data reduction it was desirable to normalize the force 

coefficients with the heaving velocity but to do this it was necessary to 

establish that the effect on these coefficients of changing the amplitude 

was negligible.    Since it was impractical to do this at every combination 

of parameters the case of the 30° delta wing,   12    angle of attack, 

0. 83 chord submergence and 16. 5 ft/sec tunnel velocity was chosen as 

at least representative if not a worst case.    In the planing runs the 

oscillation amplitude was more constrained by other things to small 

values,  consequently the effect was that it was not practical to measure 

but was thought to be very slight. 

In the ventilation runs a whole new group of parameters was 

introduced.    They are the air supply rate,  the cavity length and the 

cavity pressure.    These parameters are all directly related to each 

other so the situation is not quite as complicated as it sounds.    The basic 

variable chosen was the air supply rate but the other data were also 

computed. 

Data Runs. 

In this section we will be concerned with the actual steps of data 

gathering.    For the most part the steps are the same for both fully 

wetted and planing tests.    The basic parameter varied for these two in 

any particular run was the frequency whereas in the ventilation runs the 

air supply rate was varied. 

Before tht start of a run we must select and fix the following 

"variables": 

1.    Model 

Z.    Angle of attack 
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3. Submergence 

4. Oscillation amplitude (fully wetted) 

5. Tunnel velocity 

At some time during the testing each combination of model and 

attachment fixtures must have its mass determined because the force 

due to the "live" mass and the acceleration must be accounted fcr to 

determine the fluid mechanical forces.    This was accomplished by 

assembling the model and fixtures as for a test and then with the tunnel 

dry the model would be oscillated and the live mass tare determined. 

Having fixed the above parameters and with the tunnel full and 

operating at the chosen velocity but with the model stationary,  the bridge 

excitation voltages are checked and the bridges balanced to limit the DC 

input to the RSA.    With the static bridge outputs zeroed the an.plifiers 

are balanced.    Now the model can be oscillated. 

The frequency is chosen on the VP^.FO and the voltage for the 

desired oscillation amplitude is dialed in.    With the input shorted **ach 

outpui channel of the RSA is zeroed to limit the tare.    Now the signal 

from the velocity transducer on the oscillator is applied at the input of 

the RSA and the phase of the command signal varied so that the RSA out- 

put appears only on one channel.    By varying the phase in this way a 

velocity reference is obtained.    The force is applied to the RSA.    That 

part of the force signal observed on the channel previously containing the 

velocity has the same phase as the velocity.    The second output channel 

gives the quadrature component of force. 

In a typical data block zeros are taken for each channel with the 

input shorted.    The heaving velocity is applied to the RSA and read.    The 

«JUkjt-VJKJ ■ 
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force signal is applied and each channel read.    The input is again 

shorted and zeros again taken.    When using the "lift" balance, the first 

force taken is the lift.    After the second set of zeros another velocity is 

taken and then the pitching moment.    This routine is repeated again at 

constant frequency so that redundant lift and pitching moment read.ngs 

are obtained with sets of zeros before and after each force reading. 

The data taking is similar for the drag balance except that o.ily one force 

is being read.    This process is repeated at each of the frequencies 

investigated. 

The ventilation runs are similar in that the bridges and amplifiers 

are balanced with the -nodel stationary and the RSA outputs are zeroed 

with shorted input.    The primary difference lies in that the frequency is 

fixed not just for a "block" of data but for an entire "run".    The para- 

meter varied within the run is the air supply rate. 

Data Reduction. 

The data reduction was accomplished for the most part with the 

aid of an electronic digital computer.    The calibrations and data reduc- 

tion are intimately tied together,   consequently some overlap with the pre- 

vious section on calibrations must be expected.    The equations defining 

the calibration coefficients and their use in the data reduction are pre- 

sented here. 

1.    Force Coefficients. 

We will assume that the hydrofoil is performing a simple harmonic 

heaving motion. The vertical displacement transducer output is then given 

by a relation of the form 
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y = FjA sinUJt (1) 

where y is the vertical displacement transducer output,   F, the displace- 

ment calibration coefficient obtained as described previously and A   is 

the amplitude.    Feeding this displacement signal into the RSA we get 

(all RSA output signals will be denoted by tildes) 

y ^ C A' Fj (2^ 

where C is some constant associated with the Fourier analysis performed 

by the RSA. 

Because the motion is simple harmonic the velocity transducer 

output can be written in the form 

y = F^AWOS xt. (3) 

This can also be thought of as the defining relation for the velocity cali- 

bration factor,  F, .    The signal becomes,  after processing by the RSA, 

y = F2CA'uu (4) 

or substituting equation (2) into equation (4) we get 

y = F2^U'. (5) 

Solving equation (5) for F-, shows us explicitly how we may obtain this 

calibration factor 

F    ~ 

y 

The acceleration is also directly related to the velocity and since 

we know the value of the calibration mass we can use Newton's Second 

Law to infer the force output. 
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F = -mF-A'u)   sin cut (7) 

This equation defines the lift force calibration factor F, and m is the 

calibration mass (total).    The signal as processed by the RSA is 

F = -mF3CA'uu2. (8) 

Substituting equation (4) into equation (8) the RSA output becomes 

F = -mF3UL|^ (9) 

and solving this expression for F, we get equation (10). 

F     ~ 
F, = - — - (10) 

3 mil)   f y     ' 
y 

The rms dynamic lift is then related to the RSA output signal through the 

factor F,. 

L     . = L     . . Fc (11) r,i r,i       5 

The subscripts r and i have been used to denote the force components in- 

phase with the apparent change of angle of attack and 90    out of phase. 

The apparent change of angle of attack is given by 

a=TJ^. (12) 

The in-phase lift coefficient is then defined by and calculated 

using equation (13). 

Lr 2F2       ^r 
CL*   =  T—TIJ = PüäFT ^F (13) 

a       T^U Aa 3    y 

The quadrature lift coefficient is then defined by and calculate using 

equation (14). 

>.  
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L. ZF7    /L.      m'F^itA 

La.       ^DUAa        DUAF3\y F2   / 

The second term in parentheses in equation (14) represents the force due 

to the acceleration of the model's and the live mass of ilic b^'.^nce.    The 

toUl live mass is m . 

The pitching moment calibration is similar.    The calibration 

ma8S m has its center of gravity at a distance I from the electrical cen- 

tner of the balance.    This offset causes a moment as the mass is accelerated 

vertically.    The moment signal can be exoressed in the form 

M = m ' F.A'asinuüt. (15) 

'This  equation defines the pitching moment calibration factor F4 and the 

processed signal can be expressed as 

M = mtF4CA'uü2 . (16) 

Substituting equation (4) into equation (16) and solving for the calibration 

Jfactor F4 we get 

F, = —^-  M. (17) 
4      muT   v x     ' 

y 

The rms dynamic pitching momem is related to the RSA output 

signal through the factor F. . 

M     • = M     • .F4 (18) 
r, i *, i       4 

The in-phase pitching moment coefficient is then defined by and calculated 

using equation (19). 

Mr 2F2       M. 
CMär 

= ^^ = ^^vf (19) 
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The quadrature pitching moment coefficient is defined by and calculated 

using equation {ZO). 

Mi 2F2     /Mi     m
,t'F4U)\ 

CM=- = T~7T7J = OUäFA^ FT-] (20) 
a.     jcL Aca 4 \ y 2    / 

The distance of the total live mass from the electrical center of the 

balance is t   and m   is as for the lift.    The  pitching moments as given 

above are for moments about the electrical center of the balance.    To 

obtain moments about a parallel axis through the model planform's 

centroid we must have drag data. 

The drag is reduced in much the same way.    The drag calibration 

factor is obtained statically and is the same for all frequencies.    Also, 

because the motion is perpendicular to the direction that the force is 

being measured there is no live mass tare.    The drag force is related to 

the RSA output by 

D     . = D     . . Fc (21) r,i r,i       5 v     ' 

and the drag coefficients are given by 

Dr   . 2F2     Dr  i 
CD

„    
= i Xö = öüäF: -ir- {ZZ) 

a T0^   AOL 5      y 

2.    Ventilation Parameters. 

The additional data taken during the ventilation runs were 

reduced to dimensionless parameters as follows. 

The cavity length was measured with an ordinary rule and the 

number divided by the model chord length to produce a dimensionless 

cavity length. 
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The air supply rate was measured with a Fischer-Porter flow 

meter and the supplyrate reduced to standard cubic, feet per second 

using calibration information provided by the manufacturer.    An air 

supply coefficient was defined as 

c   - Q_ 
Q      UAsina' 

This has the meaning of a column of air of cross-sectional area equal to 

the projected frontal area of the foil and moving at free stream velocity. 

The ventilation number is analogous to the cavitation number and 

is defined by 

P   -P 
CD       C 

The cavity pressure was measured by a manometer connected to the 

ventilation strut.    The pressure drop in the strut was calibrated as a 

function of the air flow rate so that the cavity pressure reading could be 

adjusted accordingly. 

IV.    Discussion of the Experimental Data and Theoretical Calculations. 

The first portions (A, B) of the discussion are concerned with the 

dynamic measurements of the delta wing hydrofoils in fully wetted and 

forced-ventilated flow.    Then in (C) the experiments concerned with 

steady planing flow and the relevant theory are described.    The results 

of the dynamic planing tests and comparison with the theory outlined in 

Appendix II are then described in 'D, E).    Section (F) describes the work 

carried out in the High Speed Water Tunnel on two-dimensional non- 

steady hydrofoils. 
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A.    Fully Wetted Flow. 

The fully wetted results are separated into that for the 15    delta 

wing and that for the 30   delta wing.    Figures 9,   10 and 11 present the 

unsteady lift,  drag and pitching moment about the planform centroid for 
o 

the 15    delta wing at 0.83 chords submergence.    Figures 12,   13 and 14 

present the same data at 0.50 chords submergence and Figs. 15,   16 and 

17 are for a submergence of 0.17 chords. 

Also shown on Fig. 9 is the effect of reduced frequency on the 

unsteady lift as calculated by Lawrence and Gerber (24).    Because they 

did not present data for the aspect ratios tested, the results used here 

are interpolated from their tabular values.    Their results agree quite 

well with the present experiments, as can be seen from the figure, for 

zero angle of attack. 

There is a sizable non-linear angle of attack effect on the in- 

phase lift but almost no effect on the quadrature lift.    The non-linear 

effect is presumably due to leading edge separation since the foils have 

sharp edges.    The quadrature lift seems to be an apparent mass effect 

since it is linear in reduced frequency but the slope is somewhat smaller 

than that calculated using the "linear" model. 

The in-phase drag data also exhibit a non-linear effect greater 

than the projection of a linear value of normal force.    One expects the 

lift and drag forces to be related by the angle of attack since due to the 

separated edges the loading should be mostly normal to the foil.    The 

in-phase drag exhibits a fairly large reduced frequency effect at non- 

zero angles of attack.    This is believed to be a real effect,  not an 

experimental problem.    The quadrature drag is about as expected except 
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for reduced frequencies less than one where the data are independent of 

angle of attack. 

The in-phase pitching moment is very small for the 15    delta 

wing.    A slight pitch-up moment is noted which is no doubt due to the 

flow not being conical near the trailing edge.    The reason for the unsual 

behavior of the quadrature pitching moment with angle of attack is not 

known. 

Figures  1Z,   13 and 14 illustrate that the free surface effect is 

negligible at 0.50 chords submergence.    At 0.17 chords submergence, 

illustrated in Figs.   15,   16 and 17,  there is a noticeable free surface 

effect.    All of the values are reduced slightly.    What is particularly 

noticeable,  however,  is that the quadrature lift and drag are negative at 

low reduced frequency,  particularly at the largest angle of attack.    It 

might be expected that since this is a surface effect it might be Froude 

number dependent but no investigations of this point were undertaken. 

Recent theoretical treatments of delta wings have been primarily 

concerned with the description of the flow resulting from the leading 

edge separation.    This separation produces a sizable non-linear effect as 

was noted in the data.    Figure  18 presents a summary of the major 

steady theories calculated for the 15    delta wing at each of the angles of 

attack tested.     Also presented on this graph for comparison only is the 

mean of the present experimental dynamic data for the various reduced 

frequencies tested  at   each of the angles of attack.    Of course we do not 

expect the dynamic results to be applicable f^r the steady state case 

except in the limit of zero reduced frequency.     But the variation in the 

in-phrse lift coefficients with reduced frequency over the range tested 
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is not large as, for example,  is shown in Fig. 9,  so we may reasonably 

expect some degree of correlation between the two.    We see that the 

zero angle of attack value is fairly well predicted by Jones' steady state 

method.    The agreement with the Brown-Michael theory is not good and 

appears to get worse with increasing angle of attack.    The Mangier-Smith 

theory also does not show good agreement but it may be better at even 

higher angles of attack.    The theory which is by far the best is that of 

Gersten.    The experimental data and theory actually overlap at six 

degrees but underestimates the lift at twelve degrees.    This might indi- 

cate that Gersten's theory is better for small angles of attack,  say a<ß. 

It would be interesting to compare the Mangier-Smith theory for a>P; 

unfortunately no data were taken for that r<tnge uf angles of attack. 

Figures 19,  20 and 21 present the unsteady lift,  drag and pitching 

moment coefficients for the 30    delta wing at G.S1! chords submergence. 

Figures 22,  23 and 24 present the same data at 0.S0 chords submergence 

and Figs. 25,  26 and 27 at 0. 17 chords submergence. 

Figure 19 also shows the effect of reduced frequency as calculated 

by Lawrence and Gerber. As for the 15 foil the agreement with the zero 

angle of attack data is quite good for both in-phase and quadrature lift. 

There is a significant non-linear angle of attack effect on the 

in-phase experimental data.    As for the more slender model the quadra- 

ture lift is almost independent of angle of attack. 

The in-phase drag exhibits marked angle of attack and reduced 

frequency effects.    The reason for the negative in-phase drag at zero 

angle of attack is not known.    The nearness of the quadrature drag to 

zero at zero angle of attack seems to indicate that the foil is perpendicular 
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to the oscillation.    The effect,  or lack thereof,  of angle of attack on the 

quadrature drag for reduced frequencies less than one is much the same 

as for the 15° foil. 

The pitching moment exhibits a larger value for the 30° foil 

presumably because the model is not really a slender body and the 

reduced loading on the aft of the foil increases the moment. 

Figures 22,  23 and 24 present the data for 0. 50 chords 

submergence.    The submergence effect is very small but the data serve 

as a useful check on the data at 0. 83 chords submergence. 

The effect of the free surface is quite noticeable in Figs.  25,  26 

and 27, which are for a submergence of 0. 17 chords.    The effect is 

most noticeable at the largest angle of attack for which the free surface 

is quite distorted.    These three figures illustrate the facts that the 

effect of the free surface is small unless the foil is quite close and also 

that if the foil is close the effect can be large. 

Figure 28 presents the effect of oscillation amplitude on the 

unsteady lift coefficient.    The oscillation amplitude is labeled with a 

voltage since it is that which is fed into the force servo controller.    The 

nominal voltage was 4 v.   and this series of runs was accomplished at 

2 v.  and 3 v.  to establish the linearity of the effect so that the coefficients 

could be justifiably normalized by the apparent angle of attack change. 

The validity of this assumption is well substantiated by the data with 

only a few-^spurious points not collapsing together. 

Figure 29 presents the effect of using different frequency-velocity 

combinations to obtain various reduced frequencies.    As can be seen 

from the agreement of the data at the same reduced frequencies and the 
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smooth behavior with reduced frequency, this is the proper reduction 

parameter. 

Data were also taken at negative six and twelve degrees angle of 

attack.    These data are typified in Fig. 30.    Little effect of reversing 

the sign of the angle on the quadrature lift is noted. 

Figure 31 presents a summary of the major steady theories 

calculated for the 30    delta wing at each of the angles of attack tested. 

Also presented for comparison in the same manner as that in Fig.  18 is 

the mean of the experimental data at different reduced frequencies for 

each of the angles of attack.    The zero angle of attack value is now not 

as accurately predicted by Jones' theory as it was for the 15    wing, 

presumably because the 30   wing is not really "slender".    Both ,he 

Brown-Michael and Mangier-Smith theories give poor agreement with 

the experimental data.    As for the 15    model Gersten's theory is by far 

the best.    It should be emphasized that we are comparing here results of 

dynamic tests averaged over a range of frequencies with calculations 

from steady state theories.    While the experimental results of in-phase 

lift coefficient for the 15    wing do not show much change with reduced 

frequency,  those for the 30    wing do particularly at the lower reduced 

frequencies and highest angle of attack (see again Fig.  19).    For this 

reason the average  of the  present dynamic data at the higher angles of 

attack is an incorrect basis of comparison;  uncertainties in extrapolating 

the experimental data to zero reduced frequency led us instead to make 

the present comparison.    Even on the basis of these comparisons shown 

in Fig. 31 and the other examples it is clear that much more remains to 

be done in order to predict non-steady forces of fully wetted delta wings 

at moderate angles of attack. 
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B.    Ventilated Flow. 

It was originally intended to test both models with ventilated 

cavities but only the 30   apex angle delta wing was tested for reasons 

previously described.    Also due to the additional parameter cavity 

length, and associated parameters cavity pressure and air supply rate, 

the tests were limited to one submergence and one angle of attack. 

These investigations were not intended to be as extensive as the other 

measurements but were intended as a first look into a previously unin- 

vestigated area. 

Figures 32 and 33 present the unsteady lift and drag coefficients 

at various cavity lengths and reduced frequencies.    The behavior of the 

coefficients with cavity length is odd but not entirely unexpected in view 

of the findings of Klose (2).    Projections of the steady values of Cj^ 

calculated by Kaplan,  et al (26) using the Cumberbatch-Wu theory at a 

cavitation number of zero are also presented on the figures.    It can be 

seen from the figures that this underpredicts the experimental data at 

the lowest reduced frequency and largest cavity length (i. e. ,  lowest 

ventilation number). 

Although it was not possible in this series of investigations it 

would be very interesting to have measurements of the unsteady cavity 

pressure during the oscillation cycle.    Before a valid model can be 

established to attempt the calculation of the unsteady forces,   more 

investigation needs to be done to find the proper boundary conditions. 

The measured average ventilation number and average air supply 

coefficient were also determined as a function of cavity length and are 

shown in Figs. 34 and 35.    There is a direct correlation of ventilation 
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number with cavity length independent of reduced frequency.    The same 

situation seems to exist for air supply coefficient at least at the lower 

cavity lengths,  although for longer cavity lengths a great deal of scatter 

becomes apparent.    This may be due in part to the difficulty in deter- 

mining the cavity termination point especially when the cavity is long, 

but may also be associated with the change in the entrainment mecha- 

nism at the terminus of the cavity which is well known to occur with 

steady cavity flow in the presence of gravity. 

High speed flash photographs of four ventilated flows are 

presented in Fig.  36.    Photograph (a) shows a low reduced frequency 

and fairly short cavity.    The bursts of bubbles entrained in the wake are 

due to the basic flow,  not the forced oscillation.    T h* frequency of the 

heaving oscillation is much lower than the shedding frequency.    Photo- 

graph (b) presents a higher reduced frequency and slightly shorter 

cavity length.    The oscillation may be seen in the sinusoidal mean posi- 

tion of the wake.    As can be seen in all the photographs the entrainment 

in tho region of cavity closure makes determination of the cavity length 

difficult.    Photograph (c) shows a higher reduced frequency still and a 

cavity length about the same as in the first case.    The bubbles entrained 

into the shed vorticity are clearly seen.     Photograph (d) shows the same 

reduced frequency as (c) but with a longer cavity length.    The waves on 

the cavity wall are easily seen.    The large quantity of air in the wake 

illustrates why this case has the largest air supply coefficient. 

It might be noted that all the cavities are smooth along the first 

half chord and not over the aft part.    The reason for this is that the 

supporting strut causes spray which disturbs the cavity wall. 
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C.    Steady Planing of Delta Wings. 

Although a rather large literature on the planing phenomenon has 

developed over the years,  the flat triangular surface or delta wing has 

received very little attention.    Most experimental work has been con- 

cerned with planing of prismatic bodies having a definit "Vee"  in the 

cross-flow plane or simpler profiles such as a flat rectangular planing 

surface.    In fact we have been unable to find any experimental work on 

planing of flat delta plan forms;  the only theoretical treatments are 

those of Tulin (Ref. 30) already mentioned and Maruo (Ref. 34).    As the 

Tulin theory forms the basis of the non-steady planing measurements 

reported in the next section it seemed to be advisable to undertake a 

brief investigation of the steady planing of delta wings and to compare 

the results of this theory with experimental observations. 

The slender body planing theory of delta wings is laid out in 

Appendix II.    The final results for steady planing are contained in 

Eq. A-65 and an additive term accounting for the effect of gravity, 

Eq. A-72.    First we present the results of the measurements themselves. 

These are summarized in Fig. 37 where the lift coefficient versus angle 

of attack is given for delta wings having apex angles of 10  ,   15   ,  30  , 

45    and 60  .    The chord of these foils ranged from about 5 inches to 

about a foot and this together with the variable flow velocity in the tunnel 

is responsible for the different Froude numbers shown in the legend of 

the figure.    It will be noticed that there is a distinct Froude number 

effect though it is not very large.    These same results are replotted and 

compared with the theory of Appendix II foi tha 10   ,   15    and 30    apex 

angles in Figs.   3 3,   39 ar.d 40 respectively.    On the whole the theoretical 



■38- 

predictions are in reasonable agreement with the observations.    As is 

discussed at some length in the appendix, this theory is limited to small 

apex angles and to angles of attack much smaller than the apex angle. 

Thus the domain of validity is,   strictly speaking,  rather small for the 

10° apex angle case and we see in Fig. 38 that for angles of attack of 

14° or less,  the theory rather underpredicts the observed lift.    Pre- 

sumably at the lowest angle,  a = 4°,  the theory should become applicable; 

and it appears to do so.    These same trends are also in evidence for the 

other two angles shown except that the theory becomes relatively more 

successful although it appears in Fig. 40 that for an apex angle of 30  , 

the theory now actually overpredicts the lift force.    No doubt this is 

due to the breakdown of the "slenderness"  assumption of the theory. 

At the higher apex angles,  the present theory seriously overpredicts the 

observed lift and for that reason,  these comparisons are not shown. 

Also shown in Figs.   38 and 39 are the results of the calculations 

of Cumberbatch and Wu (Ref. 27) for the lift coefficient of a slender delta 

wing in fully cavitated flow with zero cavitation (or ventilation) number. 

This calculation is in many respects similar in spirit to that in 

Appendix 11.    However,  because the flow is unbounded and there is no 

free surface they were able to carry out a much more exact calculation. 

Of course their results should not really be applicable for small angles 

of attack (where the present theory holds) but instead should become 

applicable when a > p\    In fact,  we see that the experimental results 

closely approach this theory for large angles of attack. 

This follows on the intuitive ground that in the cross flow plane the foil 
is then submerged one span beneath the free surface — which effect 
should then be small. 
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All slender body theories predict that the center of pressure 

(for flat uncambered profiles) is at the planform centroid.   Measure- 

ments of the center of pressure for the family of delta wings are reported 

in Fig. 41.    There we see that this slender body prediction is clearly not 

followed.    These results can be explained by a decrease in lift near the 

trailing edge (in fact it must vanish there) to cause the forward move- 

ment of the center of pressure.    This is, then,  an inherent defect of 

slender body theory.    Nevertheless,  it appears that this theory is able 

to provide reasonable estimates of the steady lift coefficient for planing 

delta wings.    We next turn to the dynamic planing experiments. 

D.    Dynamic Planing Measurement of Delta Wing 

Hydrofoils Oscillating in Heave. 

Both the 15    and 30    delta wing models were tested dynamically 

in planing.    Angles of attack of six and twelve degrees were run for 

each of the models.    Only one free stream velocity was run (U = 22 ft/sec) 

since this was as high as practical and the heaving amplitude was kept 

as small as practical to lessen the wetted area change. 

Figures 42,  43,  and 44 present the unsteady lift,  drag and 

pitching moment coefficients for the 15    delta wing.    Also shown on the 

figures are the theoretical calculations of Appendix II.    The agreement 

of the theory and the in-phase lift is poor which is not too surprising for 

this foil since the theory was developed for small ratios of angle of 

attack to apex angle.    The logarithmic behavior of the theory appears to 

be too strong compared to the other non-linear term and thus like the 

steady case the in-phase lift coefficient is underpredicted.    The quadra- 

ture lift,  on the other hand,   is quite accurately predicted with the 
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experimental points lying along the predicted line.    The drag force is 

slightly better predicted by the theory although the smallness of the 

values makes the agreement seem better than it really is.    The quadra- 

ture drag is negative below a reduced frequency of one-half for the 

experimental data.    It is unknown if this is a real planing effect.    The 

pitching moment data exhibit much the same behavior as for the fully 

wetted flow.    It is interesting that the dynamic tests show that the cen- 

ter of pressure is forward of the planform centroid just as for steady 

planing. 

Figures 45,  46 and 47 present the unsteady lift,  drag and 

pitching moment data for the planing 30    delta wing.    Also given on the 

same graphs are the results from the theory of the appendix calculated 

for these cases.    It would be expected that since the angle of attack to 

apex angle ratio is substantially less than for the 15    apex angle case, 

the theory would predict more accurately the experimental values for 

the in-phase lift.    This does not appear to be the case and the relative 

difference is about the same for the two apex angles,  but the quadrature 

lift is again predicted quite accurately. 

The in-phase drag seems again to be predicted more accurately 

than the lift but the difference is more apparent than real.    The quad- 

rature drag is somewhat overpredicted by the theory,  perhaps because 

the 30    foil is not really a very slender body.    The pit:hing moment data 

again show that the center of pressure is forward of the foil planform 

centroid. 

Figure 48 presents high speed flash photographs of the 30    delta 

wing planing at three reduced frequencies.    The angle of attack is only 
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six degrees in this case, consequently the cavity is shallower than for 

the other case where the angle of attack was 12  .    The distortions in the 

cavity due to the oscillation are evident in the bottom picture,  especially 

the one of higher reduced frequency. 

E.    Part- Cycle - Planing. 

In the course of the planing experiments it was discovered that 

if the foil was oscillated such that it was planing during the upper part 

of the cycle and fully wetted during the lower part of the cycle,  the 

phase of the lift force would change drastically.    This striking effect 

has been named "part-cycle-planing".    During this part-cycle-planing 

phenomenon the in-phase lift coefficient could actually become negative 

which would mean that an elastically mounted foil could be dynamically 

unstable.    It was also readily apparent that the amplitude of the foil dis- 

placement governed the magnitude of the in-phase lift coefficient (unlike 

the usual case) and that if the amplitude were sufficiently large this com- 

ponent of the lift force would pass through zero and become positive again. 

The amplitude for which the in-phase lift is zero (integrated over a cycle) 

determines the condition of neutral stability.    This was determined empir- 

ically for the 30    delta for several tunnel velocities as a function of 

reduced frequency and is shown in Fig. 49.    Rather surprisingly different 

boundaries are found for each speed;  this would indicate that either 

gravity or perhaps surface tension might play an important role. 

It should be mentioned that for the usual planing experiments the 

tip of the foil was always positioned so that it just emerged above the 

undisturbed water surface.    The part-cycle phenomenon would occur 
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when the mean position of the foil was lowered slightly so that the tip 

became submerged during part or most of the cycle.    With further 

immersion the upper surface of the foil would become fully wetted at 

all times and the anomolous results of part-cycle-planing would give 

way to the well-behaved conditions of fully wetted flow. 

Two high speed flash photographs of the 30° delta wing operating 

in the part-cycle-planing mode are presented in Fig. 50.    In the upper 

photograph the foil has just ceased to plane.    The cavity is almost 

unchanged except at the front of the foil.    In the lower picture the 

cavity has collapsed and only the ventilated leading edge vortices 

remain. 

F.    Some Two-Dimensional Experiments on Hydrofoils 

Oscillating in Heave. 

The availability of the dynamic measuring system was an 

inducement to consider making additional experiments in the two- 

dimensional test section of the high speed water tunnel at Caltech.    We 

had been somewhat reluctant to do this in the past because of the experi- 

mental problems associated with mounting of the hydrofoil-strut assembly 

in the test section,  and because of the problem of maintaining a water- 

tight seal on the dynamic balance over the range of static pressures and 

tunnel velocities to be experienced.    After some consideration the hydro- 

foil driver unit was attached to a special mounting plate which was bolted 

to the frame of the tunnel.    The prston of the driver communicated to 

the working section through a hole drilled through the upper window of 

the tunnel;  the mounting plate contained an additional O-ring seal which 
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prevented tunnel water when pressurized from entering the hydraulic 

piston.    The strut assembly was *hen attached to the piston.    A thin 

plate was fastc-ned over the opening between the tunnel and tue small 

plenum formed by the hole in the upper window;  it had a contoured open- 

ing in it which permitted the strut to pass through. 

The supporting strut v. a. i about 12 inches long and the tunnel 

height is 30 inches,   so that the dynamic model was not mounted on the 

center line.    Strut inserts to locate the model on the tunnel center line 

were made but it was found that with the longer length of strut the natural 

frequency of resulting structure in fore-and-aft bending was too low,  so 

the off-center mounting had to be accepted.    The model was then attached 

to the strut with about 0.010 inches tip clearance on either side and the 

tunnel section closed up.    We were concerned that the strut might wobble 

from side to side in its heaving motion and thereby impart erroneous 

forces,  not to mention the possibility of damaging the balance.    We were 

agreeably surprised to find that at tunnel speeds of about 30 feet per 

second, the strut-foil system tracked up-and-down in a true vertical 

line and that running gap clearances as low as 0.005 inches could be 

easily maintained. 

Providing a continuous and reliable waterproof seal on the 

balance was another matter,  however.    The range of tunnel static pres- 

sure was froir. nearly the vapor pressure of water to about one atmosphere 

gage.    The waterproofing consisted only of two layers of a thin latex sheet 

cemented to th'r balance and because of this,  only a small pressure dif- 

ference between the internal cavity of the balance and the exterior flow 

can be supported.    The initial tests were made with this internal pressure 
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approximately 1/4 psi above the tunnel ambient pressure to prevent 

leaks into the cavity.    This approach had to be abandoned,  however, 

because under the action of flow (about 30 feet per second) this slight 

positive pressure together with the surrounding pressure field would 

peel off the waterproofing layers and short out the electrical connections 

of the strain gages.    It was then found that the waterproofing layer could 

be made to withstand a good vacuum without pinhole leaks developing. 

Consequently the experiments were then made with the pressure inside 

the balance maintained at about 2 mm Hg absolute. 

A photograph of the foil-strut assembly in the water tunnel is 

shown in Fig. 51.    The off-center position of the foil is clearly seen as 

is the rather extensive development of cavitation on the supporting strut 

as well as the force balance itself.    In the case of Fig. 51,  the cavitation 

bubble is considerably longer than the chord;   in achieving this condition 

the tunnel ambient pressure is lowered gradually and it is thereby 

necessary to pass through a condition of extremely unsteady partial 

cavitation.    We were apprehensive that these unsteady loads — especially 

in roll moment - might destroy the forces balance.    The partially cavi- 

tating region was therefore passed through as quickly as possible and for 

this reason no dynamic measurements were made in this important 

regime. 

Instead,  the dynamic experiments were limited to two brief sets 

of measurements,   one fully wetted and the other fully cavitated.    The 

fully wetted experiments were carried out on a flat plate hydrofoil hav- 

ing a sharpened leading  idge and a sharpened trailing edge.    The chord 

was 6 inches and the thickness was 1/4 inch;  the span was a nominal 
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6 inches and as the strut length was nominally 12 inches, the hydrofoil 

was mounted 2 chords from the upper window and 3 chords from the 

lower.    Tunnel speed was nominally 30 feet p^/ second and the oscil- 

lation frequency from about 2-25 Hz. 

Results of the dynamic measurements in heave for mean angles 

of attack of zero and 6° in fully wetted flow are shown in Fig. 52.    The Ordi- 

nate and abscissa have been divided by 2ir.    Also shown for reference 

are the predictions oi linearized unsteady two-dimensional lilting sur- 

face theory without wall corrections.    Whatever the influence of the 

latter it can be seen that the linear theory (see for example Ref.  1) gives 

a reasonable estimate of the unsteady forces except that the magnitude 

of the experimental lift force vector is low; the phases are in reasonable 

agreement.    Although the experimental results for a = 0    hold no real 

surprises, we were quite surprised at the outcome of the a = 6    tests. 

There, as Fig. 52 clearly shows, the theory does not account for the 

observations except in a qualitative way.    Not only is the lift magnitude 

larger (than estimated) but the phase is quite different,  first leading 

then lagging the theoretical estimate as the frequency increases.    These 

results, we feel,  are clearly due to the existence of the sharp leading 

edge;   similar experiments by other workers on rounded hydrofoils do 

not show such a pronounced angle of attack effect.    While the cause of 

this effect was not investigated through more detailed studies,  it seems 

plausible that a separation bubble or vortex must be formed dynamically 

at the sharp leading edge.    The possibilities here for both experimental 

work and analysis are quite challenging. 

As indicated above,  dynamic measurements in fully cavitating 

flow presented certain instrumentation problems.    There are also 
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additional questions of perhaps a facility nature that also arise, but 

before discussing these let us turn to Fig. 53 which gives in graphical 

form the principal experimental results.    In this figure are presented 

both components of the dynamic lift in heaving motion of a flat hydro- 

foil in fully cavitating flow.    The mean angle of attack is 8    (unlike the 

photo of Fig.  1).    Again these experimental findings are compared with 

existing unbounded flow theory for cavitating hydrofoils having infinitely 

long cavities.    As in the fully wetted case there is qualitative agreement 

between the two.    However,  in the present case we are not really cer- 

tain just how to interpret the experimental results. 

For one thing,  it is almost certain that wall effects will certainly 

be much more important in non-sleady ca'tty flow than corresponding 

fully wetted flow;  perhaps another rrore serious question is the effect 

of the fluctuating cavity volume upon possible pressure fluctuations in 

the tunnel circuit.    Also,  from Fig. 51 it can be seen that the flow is not 

strictly two-dimensional because of the cavity attached to the supporting 

strut.    At the moment it is difficult to say just which of these effects is 

the more important or even if the results observed are typical of un- 

bounded cavity flow.    It was in fact because of these reservations that a 

more extensive experimental program of non-steady cavity flows in the 

high speed water tunnel was not undertaken. 

The results of Fig. 53 as they stand,  however,  are not without 

interest.    The data for the choked tunnel (i. e. , the cavity disappearing 

into the tunnel diffusor) are very similar to the unbounded flow case 

except that the real part of the lift coefficient is about 70-80 percent of 

the theoretical unbounded value and for practical values,  the same can 
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be ascribed to the imaginary part too.    The behavior with reduced fre- 

quency is also rather similar and is quite unlike the usual fully wetted flow. 

It is possible that these differences are purely wall effect problems and this 

possibility is now being examined theoretically on another contract.     In 

addition,  it would be expected by analogy with steady cavity flows past 

lifting surfaces that shorter cavities would exhibit higher in-phase lift 

coefficients than with infinitely long cavities.    Such an effect is observed 

in Fig. 53, but we have no such guide for the imaginary part which appears 

to decrease when the cavity becomes shorter.    Clearly, this whole area, 

especially with partially cavitating hydrofoils,  is in need of further research. 

V.    Summary and Concluding Remarks. 

The present report includes a fairly extensive series of experiments 

on the unsteady forces of delta wings oscillating in heave in three different 

modes:   fully wetted,  planing and forced ventilated.    In addition further 

experiments were carried out on steady planing delta wing hydrofoils.    A 

quasi-steady extension of Tulin's theory was made to interpret the dyna- 

mic force measurements;  this same theory was also used to estimate the 

forces in steady planing. 

Generally speaking,  the theory gave a reasonable estimate.    The 

steady forces and the quadrature lift forces in dynamic planing were also 

well estimated.    However, the in-phase dynamic lift force was not well 

predicted by the theory,  generally it was about 25 percent low and did not 

indicate the observed changes with reduced frequency.    Also,  a new un- 

stable planing phenomenon associated with slightly submerged delta wings 

was found. 

*Contract Nonr 220(59). 
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The dynamic measurements on forced-ventilated delta wings 
> 

are new and they reveal that the presence of the ventilated cavity mater- 

ially changes the dynamic forces just as similar experiments on two- 

dimensional hydrofoils have. 

The fully wetted dynamic measurements wer-* found to be well 

correlated with existing lifting surface theory for zero mean angle of 

attack.    However these dynamic coefficients are not well correlated by 

existing theories at angles of attack of 6    and 12 . 

Some additional experiments on two-dimensional foils in a 

closed water tunnel were also carried out.    Dynamic measurements on 

a heaving flat plate foil with sharp leading edge showed quite good agree- 

ment with existing non-steady theoretical predictions;  there was a 

pronounced effect of angle of attack,  and it was suggested that a tran- 

sient leading edge separation bubble could be responsible for this effect. 

Dynamic measurements on fully cavitated hydrofoils were also carried 

out in the closed tunnel;  this raised certain problems of interpretation 

of the results,  specifically the question of wall effect,  tunnel dynamics 

and lack of flow two-dimensionality due to the cavitating supporting strut. 

While the observed forces are in qualitative agreement with unbounded 

flow theoretical predictions,  many experimental and theoretical prob- 

lems remain to be solved. 

As a general remark it was found that at reasonable angles of 

attack,   say 12  ,  none of the existing dynamic theories would adequately 

predict the observed forces in any of the above modes for slender delta 

wings,  and that as a rale the in  phase lift force was greater than 

estimated. 
f 



-49- 

VI.    References. 

1. H.  N.  Abramson,  W. -H.  Chu and J.  T.  Irick,  "Hydroelasticity 
with Special Reference to Hydrofoil Craft", Naval Ship Research 
and Development Center,  Report 2557, September 1967. 

2. G.  J.  Klose,  "Unsteady Forces on Oscillating Hydrofoils",  Ph. D. 
Thesis,  California Institute of Technology,   1966. 

3. G.  J.   Klose and A.  J.  Acosta,   "Unsteady Force Measurements 
on Fully Wetted Hydrofoils in Heaving Motion",  J.  Ship Res.   12 , 
pp.  69-80, March 1968. 

4. J.  H.   B.  Smith,   "Improved Calculations of Leading-Edge 
Separation from Slender Delta Wings",  R. A. E.  Tech.   Rept.  No. 
66070, March 1966. 

5. R.  T.  Jones,   "Properties of Low-Aspect-Ratio Pointed Wings at 
Speeds Below and Above the Speed of Sound",  NACA Report 835, 
1946. 

6. M.   Roy,   "Caracteres de l'Ecoulement autour d'une Aile en 
Fleche Accentuee",  C.   R.  Acad.  Sei.,   Paris,  234,  2501,   1952. 

7. R.   Legendre,   "Ecoulement au Voisinage de le Point Avant d'une 
Aile a Forte Fleche aux Incidences Moyennes",  8th Int.   Cong.  Th. 
Appl.  Mech. ,  Istanbul,   1952,  Rech.   Aero.,  No.   30,   1952 and 
Rech.  Aero. , No.  31,   1953. 

8. M.  C.  Adams,  "Leading-Edge Separation from Delta Wings at 
Supersonic Speeds",  J.  Aero,  Sei. ,  2£,  p.  430,   1953. 

9. C.   E.   Brown and W.  H.  Michael,   "On Slender Delta Wings with 
Leading-Edge Separation",  NACA TN 3430,  April 1955.    Also 
J.   Aero.  Sei.,  2A, pp.   690-694 and 706,   1954. 

10. R.   H.   Edwards,   "Leading-Eilge Separation from Delta Wings", 
J.   Aero.  Sei.,  21^,  pp.   134-135,   1954. 

11. K. W. Mangier and J. H. B. Smith, "A Theory of the Flow Past 
a Slender Delta Wing with Leading Edge Separation", Proe. Roy. 
Soc.   A,  25J_,  pp.  200-217,   1959 (R. A. E.  Rept.   Aero 2593,   1957), 

12, K,  Gersten,   "Calculation of Non-Linear Aerodynamic Stability 
Derivatives of Aeroplanes",  AGARD Rept.   No,   342,  April 1961. 

13, D, J, Marsden, R, W, Simpson and W. J. Rainbird, "Tne Flow 
Over Delta Wings at Low Speeds with Leading-Edge Separation", 
College of Aeronautics Rept,   No.   114,  ARC 20409,   1957. 



-50- 

14. D.  Küchemann,   "Report on the I. U. T. A. M.  Symposium on 
Concentrated Vortex Motions in Fluids",  J,   Fluid Mech.  21, 
pp.   1-20,  January 1965. 

15. M.  Roy,   "On the Rolling-Up of the Conical Vortex Sheet above a 
Delta Wing",   Prog,   in Aero.  Sei.,  7,  pp.   1-5,   1966. 

16. R.   Legendre,   "Vortex Sheets Rolling-Up along Leading-Edges of 
Delta WingB",   Prog,   in Aero.   Sei. ,  7,  pp.   7-33,   1966. 

17. J.   H.   B.  Smith,   "Theoretical Work on the Formation of Vorted 
Sheets",   Prog,   in A-ro.   Sei.,  7,  pp.   35-51,   1966. 

18. H.  C.  Garner an^l D.   E.   Lehrian,   "Non-Linear Theory of Steady 
Forces on Wings with Leading-Edge Flow Separation",   A. R. C. 
R&M No.   3375,   1964. 

19. J.   W.  Miles,   "On Non-Steady Motion of Slender Bodies",  Aero. 
Quart.   2,  pp.   183-194,   1950. 

20. I.  E.  Garrick,   "Some Research on High-Speed Flutter",   Proc. 
Third Anglo-American Aero.   Conf. ,   1951,  pp.   419-446. 

21. D.  G.  Randall,   "Oscillating Slender Wings with Leading-Edge 
Separation",  Aero.  Quart.,  Vol.   17, pp.   311-331,   1966. 

22. M.   V.   Lowson,   "The Separated Flow on Slender Wings in 
Unsteady Motion".  A. R. C.   R&MNo. 3448,   1967. 

23. R.   R.   Maltby,   P.   B.   Engler and R.   F.   A.   Keating with an 
Addendum by G.   F.   Moss,   "Some Exploratory Measuretnents of 
Leading-Edge Vortex Positions on a Delta Wing Oscillating in 
Heave",  A. R. C.   R&MNo. 3410.   1965. 

24. H.   R.   Lawrence and E.   H.  Gerber,   "The Aerodynamic Forces on 
Low Aspect Ratio Wings Oscillating in an Incompressible Flow"; 

J.  Aero.   Sei.   19,  pp.   769-781,   1952;  See also:   Errata.  J.   Aero. 
Sei.  20.  p.  29571953. 

25. M.   P.   Tulin,   "Supercavitating Flow Past Slender Delta Wings", 
J.   Ship Res.   3,  No. 3,   1959. 

26. P.   Kaplan.  T.   R.   Goodman and C.   C.   Chen,   "A Hydrodynamic 
Theory for Cavitating Delta Wing Hydrofoils",   Oceanics Inc.   Tech. 
Rept.   No.   67-33,   December 1966. 

27. E.   Cumberbatch and T.   Y. -T.   Wu,   "Cavity Flow Past a Slender 
Pointed Hydrofoil",  J,   Fluid Mech.  jj_.   Part 2,  pp.   187-208.   1961. 

28. H.   Reichardt and W.  Sattler,   "Three-Component Measurements on 
Delta Wings with Cavitation",  Max-Planck-Institut für 
Stromungsforsehung.  Göttingen.   July 1962. 



■51- 

29. T.  Kiceniuk,   "Superventilated Flow Past Delta Wings", California 
Institute of Technology Engineering Division Rept.   No.  E-101. 5, 
July, 1964. 

30. M.   P.  Tulin,   "The Theory of Slender Surfaces Planing at High 
Speeds",  Forschungshefte fur Schiffstechnik, 4,   1956/57. 

31. R.  T.  Knapp,  J.   Levy,  J.   P.  O'Neill and F.  B.   Brown,   "The 
Hydrodynamics Laboratory of the California Institute of Technology", 
Trans,   ASME 70,  July 1948, pp.   437-457. 

32. G.  Tricomi,   "Integral Equations",  Interscience Pub. ,  Inc. , 
New York,   1957.  p.   173. 

33. Bateman Manuscript Project,   "Tables of Integral Transforms", 
Vol.  II.  McGraw-Hill Book Cc. ,  Inc.,  New York,   1954. 

34. H.  Maruo,  "High- and Low-Aspect Ratio Approxiaiation of 
Planing Surfaces",  Schiffstechnik 72,  May 1967,  pp.  57-64. 

VII.    Acknowledgments. 

The undertaking of any experimental investigation of the scope 

herein discussed must always require the participation of others.    In 

particular we would like to thank Mr.   R.   Lyon of the Institute's Central 

Engineering Services and Messrs.   C.  Eastvedt,  H.   Hamaguchi, 

J.  Kingan and C.   Lundgren of the Hydrodynamics Laboratory.    The 

assistance of Miss Cecilia Lin,  Mr.   H.   Petrie,  and Mr.   M.   Wilson in 

the preparation and proofreading of this manuscript is gratefully 

acknowledged.    And finally,  to Mrs.   Phyllis Henderson and 

Mrs.   Yvonne Vedder we express our most sincere appreciation 

a,3 well as to Miss Julie Wright who typed the final manuscript. 



-bl- 

VIII.    Figures and Captions. 

Fig.   1 View of tunnel working section,  electronic apparatus and 
hydraulic oscillator mounted in the working section.    There 
is no water in the working section. 

Fig.  2 Cross-section drawing of the hydraulic oscillator showing 
the tunnel mounting,  balance (dynamometer) location and 
hydrofoil location. 

Photograph of the 15 and 30 degree apex angle delta wing 
hydrofoil models. 

The lift and pitching moment balance,  seen from both sides, 
before affixing the strain gages. 

The drag balance,   seen from both sides, without waterproofing. 

Diagram of the electronic equipment for the hydraulic oscil- 
lator and data acquisition. 

Photograph of the 30    delta wing hydrofoil planing at a small 
angle of attack. 

Sketch of the actual cross flow of a planing delta wing at a 
small angle of attack. 

Unsteady lift coefficients for a fully wetted delta wing with 
0. 83 chords submergence at various angles of attack. 

Unsteady drag coefficients for a fully wetted delta wing with 
0. 83 chords submergence at various angles of attack. 

Unsteady pitching moment coefficients for a fully wetted delta 
wing at 0. 33 chords submergence at various angles of attack. 

Unsteady lift coefficients for a fully wetted delta wing with 
0. 50 chords submergence at various angles of attack. 

Unsteady drag coefficients for a fully wetted delta wing with 
0. 50 chords submergence at various angles of attack. 

Unsteady pitching moment coefficients for a fully wetted delta 
wing at 0. 50 chords submergence at various angles of attack. 

Unsteady lift coefficients for a full> wetted delta wing with 
0. 17 chords submergence at various angles of attack. 

Unsteady drag coefficients for a fully wetted delta wing with 
0. 17 chords submergence at. various anglea of attack. 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

Fig. 16 



-53- 

Fig.   17      Unsteady pitching moment coefficients for a fully wetted delta 
wing at 0. 17 chords submergence at various angles of attack. 

Fig.   18      Summary of various steady theories of lift slope for a fully 
wetted 15    apex angle delta wing vs angle of attack together 
with the present experimental in-phase dynamic lift slope 
coefficient averaged over the reduced frequencies tested. 

Fig.   19      Unsteady lift coefficients for a fully wetted delta wing of 
30    apex angle with 0. 83 chords submergence. 

Fig.  20      Unsteady drag coefficients for a fully wetted delta wing of 
30    apex angle with 0. 83 chords submergence. 

Fig.   32      Unsteady lift coefficients in forced ventilation flow past a 30 
delta wing hydrofoil oscillating in heave for various frequen- 
cies.    The number on each of the curves is the mean length 
of the ventilation cavity expressed in chords. 

o 

Fig.  21      Unsteady pitching moment coefficients for a fully wetted delta 
wing of 30    apex angle with 0. 83 chords submergence. 

Fig.   22      Unsteady lift coefficients for a fully wetted delta wing of 
30    apex angle with 0. 5 chords submergence. 

Fig.   23      Unsteady drag coefficients for a fully wetted delta wing of 
30    apex angle with 0. 5 chords submergence. 

Fig.   24       Unsteady pitching moment coefficients for a fully wetted 
delta wing of 30    apex angle with 0. 5 chords submergence. 

Fig.  25      Unsteady lift coefficients for a fully wetted delta wing of 
30    apex angle with 0. 17 chords submergence. 

Fig.  26      Unsteady drag coefficients for a fully wetted delta wing of 
30    apex angle with 0. 17 chords submergence. 

Fig.  27      Unsteady pitching moment coefficients for a fully wetted 
delta wing of 30    apex angle with 0. 17 chords submergence. 

Fig.   28      Unsteady lift coefficients on a fully wetted delta wing of 30 
apex angle for various heaving amplitudes. 

Fig.   29      Unsteady lift coefficients on a fully wetted delta wing of 30 
apex angle showing the effect of various free-stream velocities. 

Fig.   30      Unsteady lift coefficients for negative angles of attack on a 
fully wetted 30    apex angle delta wing hydrofoil. 

Fig.   31      Summary of various steady theories of lift slope for a fully 
wetted 30° apex angle delta wing vs angle of attack together 
with the present experimental in-phase dynamic lift slope 
coefficient averaged over the reduced frequencies tested. 
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Fig.  33      Unsteady drag coefficients for the configuration of Fig.  32. 
I 

Fig.  34     Air supply coefficient as a function of cavity length showing 
the effect of reduced frequency. 

Fig.  35      Ventilation number as a function of cavity length showing the 
effect of reduced frequency. 

Fig.  36      Flash photographs of the ventilated cavity on the 30    delta 
wing at various reduced frequencies k and ventilation 
coefficients c _. . 

U 
Fig.  37      Summary of experimental data for the steady planing lift 

coefficient of a family of delta wing hydrofoils vs angle of 
attack. 

Fig.  38      Lift coefficient vs angle of attack for steady planing of a 
10° delta wing. 

Fig.  39      Lift coefficient vs angle of attack for steady planing of a 
15° delta wing. 

Fig.  40      Lift coefficient vs angle of attack for steady planing of a ' 
30° delta wing. 

Fig.  41      Location of experimentally measured centers of pressure 
(from the trailing edge) in steady planing vs angle of attack 
for the series of delta wings. 

Fig.  42      Unsteady lift coefficients for the planing 15    delta wing. 

Fig.  43      Unsteady drag coefficients for the planing 15° delta wing. 

Fig.  44      Unsteady pitching moment coefficients for the planing 15° 
delta wing. 

Fig.  45      Unsteady lift coefficients for the planing 30    delta wing. 

Fig.  46      Unsteady drag coefficients for the planing 30° delta wing. 

Fig.  47      Unsteady pitching moment coefficients for the planing 
30° delta wing. 

Fig.  48      High speed flash photographs of the 30    delta wing planing 
at three different reduced frequencies. 

Fig.  49      Frequency-amplitude boundaries for neutral stability of the 
30° planing delta wing during 'part cycle1 planing. 

Fig.  50      Flash phoiographs of 'part cycle' planing; the upper picture 
shows that part where normal planing occurs.   The lower photo- 
graph shows that during a position of the cycle, the planing 
spray sheet collapses on the top of the foil so that it becomes 
partially wetted and only ventilated tip cavities remain. 
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Fig.  51 Photograph of the cavitating hydrofoil and support apparatus. 
The black covering over the supporting strut adjacent to the 
foil is the waterproofing for the balance shown in Fig. 4. 
The mean angle of attack shown is 16 . 

Fig.  52 Unsteady lift coefficients in fully wetted heaving motion of 
a two-dimensional flat plate hydrofoil for various reduced 
frequencies and mean angles of attack.    Reynolds number 
based on chord = 1.2 X 10  .    The diagram, of the graph shows 
the relation of the hydrofoil to the tunnel working section. 

Fig.   53 Unsteady lift coefficients in heaving motion of a naturally 
cavitating two-dimensional hydrofoil having a mean angle 
of attack of 8 degrees.    These coefficients have been divided by W2. 

Fig.   '.-1      The coordinate system used to calculate planing loads. 

Fig.  A-2      The boundary value problem in the reduced cross flow 
plane. 

Fig.  A-3      Theoretical quasi-steady normal force slope. 
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APPi ':DIX I 

Notation 

a(x) local semi-span 

A foil planform area 

A heaving amplitude 

b spray position in reduced coordinates 

b, a(x)b 

B(t) Bernoulli "constant" 

c model chord length 

C RSA factor 

C-. unsteady drag slope coefficient 
5 

C unsteady lift slope coefficient 

C-, unsteady pitching moment slope coefficient about 
S foil planform centroid 

C., normal force coefficient N 

C0 air supply coefficient,   Q/UAsina 

D processed drag signal 

f reduced perturbation velocity potential 

F Froude number,   U/ZgcT 

F, displacement calibration factor 

F-, velocity calibration factor 

F, lift calibration factor 

F. pitching moment calibration factor 

Fc drag calibration factor 
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g acceleration of gra\ »ly 

U)C 
k reduced frequency,   -^7 '•     *l*o dummy variable 

t calibration mass offset 

t tare mass offset 

L processed lift signal 

m total calibration nnass;  also summing index 

m tare inass 

M processed moment signal 

n summing index 

N normal force 

p pressure;  also dummy variable 

■* velocity vector in foil coordinates 
q 
Q air supply rate corrected to atmospheric pressure 

t time 

U free stream velocity 

v. velocity of foil coordinate system with respect to an 
inerti^l system 

v heaving velocity amplitude 

x, y,z coordinates attached to foil (See Fig. A-l.) 

y  (x) foil camber function 

a angle of attack 

a apparent change of angle of attack 

ß delta wing apex angle 

Y(§) local vortex strength 

6 ordering parameter 

€ b(?)-l 

c, a(x)e 
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Q dummy variable 

^l, ?> reduced cross-flow plane coordinates (See Fig. A-2.) 

9 dummy variable 

v detined to be v.+Uy» -Ua 
b        0 

p density of water 

a ventilation number = (p    -p  W^-pU v vroo 'c'  2 

T dummy variable 

cp perturbation velocity potential 

4» total velocity potential 

uu oscillation angular frequency 

Subscripts: 

x, y, z differentiation by the subscripted variable (Note:  dot 
Tl.^.t above a symbol sometimes used for time differentiation 

and prime sometimes denotes differentiation by 
argument.) 

c cavity conditions 

i component leading apparent change of angle of attack 
by 90° 

r component in-phase with apparent change of angle of 
attack 

oo free stream conditions 
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APPENDIX II 

A Theory of Unsteady Planing of Slender 

Bodies at Small Angles of y.ttack 

Preliminary Remarks. 

As mentiontd in the text,  Tnlin (30) has previously presented a 

theory for steady planing of slender bodies at small angles of attack.    It 

is unfortunate that this paper appears to have several errors.    Never- 

theless,  it contains an interesting approach to the problem of steady 

planing and is adopted herein.    The purpose of this section is twofold. 

It is intended that Tulin's original problem be formulate anew and extended 

to unsteady planing.    The specific cases of uncambered aelta wings at 

test and oscillatiug in heave are treated in detail. 

The Coordinate System and Bernoulli Equation. 

The coordinate system used for the solution of this problem is 

shown in Fig. A-l.    It is fixed to the foil with its origin ?t the foil's apex. 

The x-axis passes through the mid-point of the trailing edge.    The y-axis 

is normal to the plane containing the apex and the trailing edge and the 

z-axis completes the right handed set,    The foil may have a small amount 

of camber but is assumed to be unyawed. 

Neglecting the effect of gravity the equation of motion of the fluid 

in th^s frame of reference is given by: 

iu\ = -ivp (A-I) 
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The term v. , not usually encountered in steady problems,  in required 

because Newton's Second Law must be applied in an inertial reference 

frame.    This term represents the acceleration of the previously defined 

coordinate system with respect to an inertial one. 

The velocity of any fluid particle with respect to the coordinate 

system of Fig. A-l is q.    This velocity is expressed in terms of a 

potential ?ach that the gradient of the potential yields the velocity. 

V*=q {A-2) 

Using this definition of * we can re-write equation A-l. 

7  * + j (v*)    f £ + v. {y cos a - x sin a) I = 0 (A-3) 

It should be noted that in the above equation motions normal to the free 

stream have been assumed.     We can integ:    le equation A-3 to get 

^j+yC7*)   + ^ + v. (y co«a-x tana) r B(t). (A-4) 

The function B(t) is often called the Bernoulli constant since in steady 

problems it is a constant.    Here it may be a function of time. 

At infinity the velocity potential 4» is given by 

4>     = (U cos a+v^ sina)xH (U sina-v, cos a)y (A-5) 

From this condition on the potential at infinity   /e get upon substitution 

into equation A-4 the value of B{t), 

B^) = —r-+ y(U cosa+v,  sina)   + j(U sina - v, cos a) (A-6) 

By subtracting the potential at infinity we can define a new 

"perturbation"  potential as in equation A-7. 

cp.*-^ (A-7) 
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Rc-writing equation A-4 in terms of the new potential cp we get the exact 
I 

unsteady Bernoulli equation for this problem. 
- 

1 2     1 ? 
cp + y{cD   +Ucosa+v,  sintt)   + yC*   + Ü sina-v.costt) 

I 
17 1 7 1 9        P 

+ T<D  )   +£ = T{U cos a + v.  sina)   + ^-(U sina-v, cosa)   +-5B (A-8) Zz'pZ b 2 b o 

Laplace's Equation and the Boundary Conditions. 

Although it has not been stated we are taking the fluid to be 

incompressible and inviscid.    The condition of incompressibility simpli- 

fies the continuity equation and the irrotationality following from the 

inviscid assumption allows us to write the velocity as the gradient of a 

scalar potential.    The equation then that the velocity potential must satis- 

fy is the well known Laplace's equation A-9. 

V<I»(xfy.z;t) = 0 (A-9) 

It is easily shown that the perturbation potential also satisfies the same 

equation. 

The boundary conditions on the perturbation potential will now be 

constructed.    From its definition the perturbation potential is seen to 

vanish at infinity.    On the foil we have the condition that the flow must be 

tangent to the boundary, which gives: 

V*x = y0 (A'10) 

where yn(x) is the camber function and the prime denotes differentiation 

with respect to its spatial argument.    Equation A-10 can be re-written 

as shown below 

4>   = * v' y      xyo 

= (cp   + Ucosa+v, sina)yQ (A-il) 
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This boundary condition on the foil is exact. The boundary condtions 

on the free surface require some approximations. They will be dis- 

cussed in the next section. 

Approximations. 

From this point on we will assume that we are treating a 

"slender" body.    What we mean by slender will become clear as the 

approximations are made.    If we can assume as a result of this slender- 

ness that cp    «cp     ,  cp     ,  it can then be neL;lrcted hi La-'Oace's equation xx        yy        zz ** - n 

and x becomes a parameter entering the problem only through the boun- 

dary conditions and the potential is not affected by conditiona upstream. 

Laplace's equation can new be written as 

v   cp(y, z;x,t) = 0. (A-12) 

The problem has been reduced to a two dimensional boundary value prob- 

lem in the so-called "cross-flow" plane. 

We can also simplify the boundary condtion on the foil under the 

assumptions: 

1) a« 1 so that sina = a and cos a = 1 

2) ^«U and 

3) avb«U. 

Equation A-11 then becomes 

*    = 'P   + UO. - v.   = Uy ' 
y       y b        70 

or we can re-write this as 

^y ' V^V-Q-Ua. (A-13) 

We h-.ve still to satisfy boundary conditions on the free surface. 

The natu/e of the problem dictates that we should have free stream 
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pressure everywhere on the free surface.    The position of the free sur- 

face,  not known a priori,  will be taken to lie along the z-axis.    In the 

actual case,   sketched in Fig.   8,  the free surface boundary is at y = Ox at 

infinite distances from the foil and acquires a complicated shape near 

the foil.    The approximation that the boundary conditions can be applied 

to the z-axis is necessary to keep the problem tractable.    Figure 7 pre- 

sents a photograph of a 30    apex angle delta wing planing at a small angle 

of attack.    The spray can be seen.    Because of the difficulty of deter- 

mining the shape of the spray and the flow in the spray region,  the spray 

will be represented as a singularity.    The separation of the tips of the 

spray depends on the static height of the apex above the free surface,  a 

slight amount of which will exist in any real situation. 

As is shown in Fig. A-2,   spray singularity is taken at z = b. 

(i.e. ,   ? = b).    Outside of this point the flow is assumed to Ke undisturbed 

or rather that tp   = 0 for  |z|>b,  and since cp = 0 at infinity,   ^ - 0 for 

I z I >b-  also. 

In the region between the leading edge,   z = a(x) and z = b, we must 

determine a velocity boundary condition which at least approximates the 

pressure condition.     This will be our next concern. 

Let us define a new velocity potential in terms of coordinates 

normalized on the local semi-span,  a(x),   since the flow will be approxi- 

mately conical. 

•D{y,z;x,t) = a(x)f(Ti, P;t) (A-14) 

The coordinates are given by: 

-i - -^       and       I = -. (A-15) 
a "      a v ' 
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The derivatives of cp expressed in terms of f and appropriate coordinates 

are given below. 

cp    = a (f-Tif -%f.) 
X X* T\        %' 

cp    = f 
y     n 

rA-i6) 
cp    = f- z        ? 

cPt = a(x)ft 

Or. the foil and in the region near the leading edge the pressure 

equation becomes 

P-P,. CO L- -^x-iK)2-ik)2+i(ua-vb)2-^ <A-17) p 

2 
where the (CDX)      erm has been neglected along with the assumptions fol- 

lowing from the smallness of a.    Replacing derivatives of CP by the 

appropriate functions of f and setting p = p     we get that at the free sur- 

face near the leading edge the following relation holds». 

-2Uax(f-?f?)-(uyo)   - (f§)   + (ua-vj   - 2a(x)£t = 0 (A-18) 

We will now estimate the value of each term in this equation so 

that some of them can be dispensed with.    Near the leading edge ? = 1. 

Taking the distance from the leading edge to b to be e and assuming f^ 

is approximately constant in that region we get that f(1) = -effr(l) near the 

leading edge.    Taking Ua   ~o(l),  Uy0~o(6),  Ua~ o(6) and v. ~o(6) where 

6«! we re-write equation (40) where the order of each term is noted. 

1 + ^2 62 1 ^2 k')2 

0 = 2Uax(l + e)f§-(uy(;)   - (f§)   + (ua-vb)   + 2a(x)ft (A-19) 

The reduced frequency has been denoted by k.    The order of the last term 
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in the above equation has not been shown yet.    It will be shown later when 

e is calculated.    Since we will seek a quasi-steady solution of this prob- 

i lern we can reasonably neglect this term until a time when the proper 

restrictions on its importance can be shown.    Keeping only terms of o(l) 

equation A-19 yields the following condition. 

fg = 2Ua Sgn{?) for     Is |?|<b (A-20) 

Conditions onf have now been specified along the entire ^-axis.    They are 

shown on Fig. A-2. 

The Solution of the Boundary Value Problem. 

The boundary value problem is,  except for the unsteady parts, 

identical with Tulin's.    The method of solution proposed by him and 

indeed part of his solution are used more-or-less directly. 

The specified boundary conditions may be satisfied by a distribution 

of vorticity of strength y{%,t) along the ^-axis between -b{x,t) and +b(x,t). 

y ;> = ä C 7^« 'A-21' 
We can also re-write equation A-21 below since Y(5, t) = 2f»(-0, ?;t). 

We can apply the t-.nown conditions on f   and f_ ,  namely 

y?) = vb+UyQ'Ua = v for     Uh 1 

f?(?) = 2UaxSgn(?) forl<|?|<b. 

Equation A-22 then becomes the following where the only unknown is 

f? for |?|<1. 



■ 

^-  

■66- 

: irv 
p"1   Ar Pb    Ar       P1 MC) 

= -2üaxIb T^^^xl^^^ik)^ (A-23) 

Re-writing this in the form of the conventional airfoil equation we have 

the following: 

,1  UC) 
uv-ZUa 

r dc 
x Jj (TT)       ^ -b 

+ 2Ua f       _dC. k T^T) for |?|<1 

The formal solution of this equation can be found in Tricomi (32) and is 

taken from Tulin's work in the form given below. 

~7r 
i Jr1 A^r f v ,   rb dr ^^   r1 dr' 

^^Uif^rrü- 2ax \ vpr)*1** J, TTT) 
Tr2/l-r 

d?) (A-24) 

The vortex sheet limit b is determined later to make fc(l) bounded. 

If we combine integrations equation A-24 becomes 

JA-t ̂—l^-^tMr^ 
.-i    -i A 

Using the following identities: 

i      _   i  r i   .   i i 

I1
J7^rd^^ for|?|<l 

*\ fTiT IT(-T- /T2-!)   T<-1 

Tr(-T+/r^)     T>1 

(A-25) 

the following equations can be shown to be true: 
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,2/r? 
.ir  Ij?-ir2axJi ^ dT 

+ 2a r1 \^:/^ dT (A-26) 

■ 

^ 

/ r^r5 7x JI^T") j 
(A-27) 

With the substitution /l-?2 tanB = /T2
-1   it can be shown for b2 = 1 

(i. e. ,  e« 1) that the integral in equation A-27 can be evaluated 

approximately. 

L-^^la.^/^./TFtan-1   /^4)h?l<' 
yr? U ' '   IT    X 

(A-28) 

To keep £-(1) bounded b must have a particular value; namely, 

v + 4a   /X7 = 0 
U "  ir-x 

If we write b as 1+c and take e<< 1 we get the following relation 

(A-29) 

for e. 

IT2 /   v \2 

^h^<-^\z 

31 Ua. 

(A-30) 

(A-31) 

Previously we have assumed that Ua   ~o(l),  v, ^olö),  Uy^oC*) where 

6<<1.    From equation A-31 then we get directly that e~o(^  ) which cer- 

tainly justifies taking b i 1 for the solution of equation A-27 and it also 

justifies neglecting e compared to 1 in the first term of equation A-19. 
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It was stated without proof in equation A-19 that the last term of 

the equation was o{k6 ).    This will now be shown.    The term is given 

below.    It has been assumed f_ is constant in the region 1 < |§| <b there- 

by neglecting any waves, therefore: 

-2a(x)ft = 2a{x)f c (A-32) 

We can evaluate e from equation A-31, 

e=Tr ra2 Vb 

Assuming simple harmonic motion for v,  we get (v. | =uu|v. I and a(x) is 

limited to ca   where c is the root chord of the foil.    Substituting this into 

equation A-32 we get the following estimate for the order of that term. 

2  (v   +Uy'-Ua) 7 
-2a(x)f  ~ 2(cax)(2UaJ lr- — "L m.  ~o(k6£) {A-33) t x x   16 2 b 

*     x' 

We may conclude then that for k~ o(l) we are certainly justified in 

neglecting the contribution of this term to the boundary condition. 

Substituting in the required value of b we get the final solution for 

h- 

MS) , L 4 Ua J 1 x jU^tan"'   * for |PI<1 (A-34) "   '*        j^r 

We can also express this in unreduced coordinates. 

L   4  Ua  J 
-r^ =-a  -tan'      x for   |z|<a (A-35) 

/l-(z/a)Ä 

This is the solution for cp   as given by Tulin. 
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The Calculation of Forces. 

The normal force on each incremental section will be found by 

integrating the pressure across the span. 

^=   p [pCO^x.M-iJlz (A-36) 
■a 

Using equation A-17 this can be re-written as shown below. 

pa   r , , ,  / sZ 

-a 

The first term of the above integral is evaluated using the relation: 

z 

a 2 
^ = -p J    [ucpx+ ^cpz)2 + cpt+ ^(uy^)   - ^Ua-vb)E]dz (A-37) 

P 9 
cp{0, z; x, t) = J -g^r cp(0, C; x, t)dC 

a(l + c) 

= -2a€Uax+ [  cp(:(0, C;x,t)dC. (A-38) 
x     a    ^ 

J   cpx(0.z;xft)dz = |^f   cp(0,z;x,t)dZ + 4aeUax
2. (A-39) 

And by an application of Leibnitz' rule we get 

cpx(0.z;xft)dz= U 
•a -a 

To use this we will need to integrate cp over the span 

.a - «a      ,a 
i cp{0, z;x.t)dz = -4a2eUav-2|  dz f rp (o, C; x. t)dC 
J-a x      J0       z   & 

= -4a2eUa  - 2 f   cp (0, z; x, t)dz f dC 
x      J0    Z 0 

= -4a eUa  -2|    zcp (0,z;x,t)dz {A-40) X       JQ        z 

Now substituting equation A-40 into equation A-41 we get 
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J   U^dz = -DU||^[-4a2eUax-2j   zcpz(0, z;x,t)d2j+4aeUax
2} ■0 

= pU24a|j{a€ax) + 2pu|^|   zcpz(0, z; x.t)dz (A-41) 

The remaining integral can be evaluated by reduction to known 

form.    The solution giver in reference (30) is repeated here. 

Pa AIT a    P£  ?        ,   L ? Ua J 
zcp (0,z;x,t)dz = — —      z^tan     —        X . dz {A-42) 

J0     z w    a   J0 /,   .   ;  .2' /l-{z/a) 

Let us substitute k = k(x, t) = - ^ ■—— and T = — .    Equation A-42 is then 
x 

equal to 

4U   2      rl,2»     -1      k        ,,. ..    ,,. =  a  a    1    T   tan      ——— dT . (A-43) 

The integral from zero to one is then solved where the last step is 

from reference (33),  p.  246. 

I   T   tan       dx =      dk *- dr 
/^7 J0      J0    [(l + k2)^/] 0 

,k      , 1/2 
(A-44) 

^ J0       -1/2      [{1/2 + kVTl 

= ^ f r4 + ^ - k /i+k2'! 
^0 

^ + %.-k/l + kJ (A-45) 

This can easily be integrated to give the following approximation. 
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j   T2tan'i—^—dT = J(k-k2) + o(k3) 0 lu? 
Then to o(k ) we have 

\   zcpz(0.2;x.t)dz = -^va   + ^ ^ j 
2    2  2 

(A-46) 

(A-47) 

Gathering terms equation A-41 becomes finally 

raIT „2.    a    . .    - .T2 a/trav^TT    va -pj   Ucpxdz = pU 4a^(aeax)-2PU   ^- ? _-+ ^-j- 

IT   IT 8    ,  2  .    n 2 
"ipu8^(a v)-irPav {A-48) 

The next term in equation A-37 is evaluated approximately.    Now, 

^2 

-a   9 /4Ua x2 (.a ,  v2 
tan 

V 4 Ua  / 

FW\ 
dz (A-49) 

If we again let k= ~ rr— and let p= /l-{z/a)2 ,  equation A-49 becomes 4 Ua 

(^jW^-^p (A-50) 

The inverse tangent can be expanded in the two regions as shown below. 

oo 

tan"1| = I-I (fe+lT(k) 
n=0 

2n+l 

oo n   /1s2n+l 
= L fe+n (?) 

n=0 

:or    p<k 

for    p>k 



•72- 

I 

The integral can then be split into two parts. 

  oo 

1  dn =   f   D/T?   1- 
p- fr/^b^^-.t^i-imii .n /  v2n+l 

+ r pA^1 

n=0 

r oo 

dp 

Ife^© 2n+l n2 

Ln=0 

dp (A-51) 

We will first treat the integral from zero to k.    In this region 

2. /      c yl-p    will be replaced by 1 since the next contribution is o{k*') compared 

to the part retained.    Expanding this integral we get the following 

expression. 

,-|2 

0 

oo n ,   v2n+l 

5' L fcrd) 
n=0 

dp= f 

2n+2 

"I£S|WT
+
 ZA e 

n=0 

The value of A    is given by 

2 
-rP 

CO 

V 2n+3 

Zn+I 
n=0 

dp 

n 
A    _ /   i\n    V       I  

n~[     '      L     (2m+ l)(2n-2m+ I) 
m=0 

Equation A-52 can now be easily integrated term by term. 

~ , oo oo      A 
ft \ (-1) ,    \ n 
T " ^   Z. (2n+l)(2n+5) +   L   T^T 

n=0 nrO 

The region from k to 1 is treated in a similar manner, 

r oo ,   . ,-i2 

I
1
P^7 

Ln=0 

n /, v2n+l k 
P 

oo 2n+2 

n^O 

(A-52) 

(A-53) 

{A-54) 

dP = J   pAVY   A^)        dp (A-55) 
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Interchanging integration and summation we get 

oo 

n=0 

For the case n = 0 we have 

L,     n J,       2n + 1    r 

«.o k   P 

(A-56) 

^['Zi^idp^^/T^.^iog i±4^ 

and for general n>0 the leading term of the solution is 

.Zn+Zf1   /l-p2' k2 ^   „4, 

k   p 

Then to o(k ) we have 

!       , 2 oo A 

J pA^p2 [tan"1 |j dp = .A0k2-A0k2logk+k2 7 ^ 
k n=l 

The integral over the whole region from zero to one is then 

(A-57) 

finally 

J   p/i-p   Ltan     -J dp=   -g.-l + logZ-Tr  2,   (2n+l)(
,2n + T) 

n=0 

oo oo       n 
„Y      Lil! V    Y _ (-i)n 
17
 L   {2n+ l)(2n+3)       L       L   {2n+4)(2m + l)(2n-2m + l 
n=0 n=0 m=0 

oo       n 
1   Y       Y (-1) 

+ 2   L       L  n(2m+l)(in-2m+l) " log k 

n=l   m=0 

Z 4 
k   + o(k^) (A-58) 

The two double sums do not converge particularly rapidly so we set them 

up on a computer (an application it is eminently suited for).    With an 

execution time of less than one second we are given i.he following result. 
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\   ?/l-p2 t811"^-)] dP = -[o.04+logk]k2 

-pjacp2dz = pav2[0<04+log(^_^)] 

(A-59) 

(A-60) 

After substituting for k we have the solution for equation (49). 

r J0 x 

The third term in equation (37) is evaluated as follows. 

-pj   CDdz=  -p|fj   cpdz 
-a -a 

This can be expressed using equations (40) and (47) in the following form. 

.a 

(A-61) 

-P 3t -a 
dz at 

7 ,222 
•4a Ua   + -»-a v + -K- -n  x    2 8    Ua 

IT        2. 
2pa v (A-62) 

The other terms in equation (37),  being constant across the span, 

are easily integrated.    Equation (37) can then be written finally as 

dN        IT   „a   .  2  .     ir2        2X        21".   ..^     (  v     v   Vl dr= -IpUa^(a ^"-yPav   +Pav |_0. 04 +log^^ ^-jj 

ir.  2 - Jpa^v - PMUVQ)   + Da(Ua-vb)' (A-63) 

Specific Cases. 

For the case of a stationary (v,  = 0),  flat (yn = 0) delta wing of 

apex angle ß(a   =ß/2) equation (63) is 

2 
FT S = Jciß2-- V^ + ^[o. 04+ log J- log|] + a2ßx (A-64) 

The normal force is obtained by integrating equation (64) from the apex 

to the trailing edge.    The normal force is reduced to a coefficient by 

divising by the dynamic pressure and the foil planform area.    The nor- 

mal force coefficient is then given to be 
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CN = 5pa + [o.26-log|]a2 (A-65) 

The lift and drag coefficients can be obtained by projecting the normal 

force vector since there are no tangential forces from this theory.    The 

normal force vector dince there are no tangential forces from this theory. 

The normal force coefficient curve slope is given by 

N 
aa = 5ß + [l.52-21og|]a 

If we oscillate the hydrofoil such that 

v,   = v sinuut 
0 

the sectional lift given by equation (63) becomes 

2       /^ s2 

(A-66) 

(A-67) 

2    dN 

PU 
= ^-P x(a--g-sinwtj-^ßxQjsiniut-a) 

ßx^sin'JUt -a] 0.04+logl-J - 
sinuut-a 

(V N      TT    2   2      v + pxl Yjsin sut - a I  -•jß x a'—-j-cos uot (A-68) 

If in the last term we write the reduced fequency as k, the time dependent 

normal force coefficient is given by 

rw E 2 
CN(t) = ^(^^«^^-^-(a-^sinuJt) 

+ (a-^-sinuüt)   [o.04 + log J - log ^ f log(l--^sin uAJj 

+ (^a-^-sinUbtj   -yßk^-cosurt. (A-69) 

We might note that previously we have restricted the size of Ua 

and v,   compared to Ua   .    More specifically,  in terms of delta wing 
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parameters, we have said that (a/ß)   << 1 and (v./Uß)   << I.    We have 

not said anything about the ratio (v./Ua). , Because of the time dependent 
o 

argument of the log term in equation (69) it will prove useful to take 

(v. /Ua)< 1 so that we can expand the argument about one.    The first 

term is clearly the dominant one of frequency uu.    Let us consider only 

that part ol C^ft) which is changing at the angular frequency w and nor- 

malize the unsteady force coefficient components by dividing by the 

apparent change in angle of attack which is 

a = -~. (A-70) 

The unsteady coefficients then become 

C        =5p + 2a[o.76.1og|] 
a r 

and 

C        = fßk (A-71) 
a. 

i 

The subscripts r and i denote the component in-phase with the apparent 

angle of attack and the quadrature component respectively. 

Figure A-3 presents the theoretical value of C*!-   /ß as a function 
9CN of a/ß.    It should be noted that Csj.     and  -R         .. have the same r Na 9a       stationary 

value.    This is not entirely unexpected for a quasi-steady theory. 

The Effect of Gravity. 

Although the preceding theory is strictly only for no gravity - 

experiments,  perforce,  must be made in the presence of a gravity field. 

This,  of course,  enormously complicates the entire problem as is well 

known.    For very slender bodies,  however,  it seems reasonable that 



-77- 

the cross-flow streamlines and hence velocities will not be affected to 

first order because of the smallness of the parameter e and the ratio of 

a to p.    If this is the case, the pressures over the wetted face of the foil 

under the action of gravity will be increased by the local hydrostatic 

pressure (except very near to the spray sheet).    This leads to the con- 

clusion that the steady lift force is increased merely by the weight of the 

fluid above the hydrofoil.    Thus if the angle of attack is a and if this 

weight is expressed in coefficient form we have 

. _ 2  sin 2a . .   n~. ACL = T —r- (A-72> F 

where F is the Froude number based on chord.    Interestingly,  Maruo 

(Ref. 34) has arrived at the same result as the limiting case of a much 

more complete lifting surface theory.    The graphs of Figs. 37-39 incor- 

porate this added term given by Eq. A-72. 

Remark«. 

It i« useful to recapitulate the differences in the assumed flow 

model and that observed in practice.    Referring again to Fig. 8 which is 

a sketch of the "actual"  cross-flow, the free surface lies above the foil, 

not in the plane of the foil.    The spray extends over the foil but does not 

form a cloned cavity.    It should also be mentioned that the flow is not 

conical near the trailing edge.    This effect is similar to the ventilated 

cases shown by Kiceniuk in Ref. (29).    A slight lift loss over the aft 

portion of the foil results and this produces a pitch up moment compared 

to the theory. 

The unsteadiness of the flow is represented in two alterations of 

the boundary conditions,  one explicit,  the other implicit.    The explicit 

■ 
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change is the addition of the heaving velocity at the foil.    The implicit 

change is in the spray position which is allowed to change with time. 

Th.   unsteady behavior shows up in the Bernoulli equation but since the 

fluid is incompressible, time eaters Laplace's equation only as a para- 

meter.    In this sense the present theory is only a quasi-steady slender 

body approximation because no previous dynamic history of the flow is 

permitted to occur in the constant pressure boundary condition. 

The theory is limited because of the slender body assumption to 

values of P<< 1.    It is further limited by other assumptions,  particularly 

the spray position,  to values of (a/ß)   << 1.    The model may have a 

small amount of camber but the heaving velocity must be small,  i. e. , 

v, <Ua.    These conditions severly restrict the present theory to a 

rather narrow range of conditions. 
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Fig.   1 View of tunnel working section,  electronic apparatus and 
hydraulic oscillator mounted in the working section.    There 
is no water in the working section. 

Fig.   3 Photograph of the 15 and 30 degree apex angle delta wing 
hydrofoil models. 

i 
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Fig.   2 Cross-section drawing of the hydraulic oscillator showing 
the tunnel mounting,  balance (dynamometer) location and 
hydrofoil location. 
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Fig.   4 The lift and pitching moment balance,   seen from both sides, 
before affixing the strain gages. 
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Fig.   5 The drag balance,   seen from both sides,  without waterproofing. 
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Fig.   7 Photograph of the 30    delta wing hydrofoil planing at a small 
angle of attack. 
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Fig.   8        Sketch of the actual cross flow of a planing delta wing at a 
small angle of attack. 
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Fig.   15      Unsteady lift coefficients fo. a fully wetted delta wing with 
0. 17 chords submergence at various angles of attack. 
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Fig.  25      Unsteady lift coefficients for a fully wetted delta wing of 
30    apex angle with 0. 17 chords submergence. 



102- ■ 

o <V 
<ü 

SH 
. .2 
^Ul 
</) rt <y 
Xü. 
Ü. u. 

i  UJ zo -u 

.8 

-  A 

FULLY WETTED FLOW 
I i 

APEX ANGLE • 30" 
D • 0.17 

O 
O 

a- 0» 
a» 6* 
o« 12* 

A   A 

Pa  a 
oo  o 8      8      8 8 

o 

12 r 

^8h 

u 
Ul 
X 

o 
3 

a ?:    4 

UJ 
O o 

-.4 

aa  0 is 
x 

a 

o 

a 

o o - 

2 3 4 

REDUCED FREQUENCY, k 

Fig.  26      Unsteady drag coefficients for a fully wetted delta wing of 
30 apex angle with 0. 17 chords submergence. 
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Fig.  48      High speed flash photographs of the 30° delta wing planing 
at three different reduced frequencies. 
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Fig.   50      Flash photographs of 'part cycle' planing; the upper picture 
shows that part where normal planing occurs.    The lower 
photograph shows that during a position of the cycle,  the 
planing spray sheet collapses on the top of the foil so that 
it becomes partially wetted and only ventilated tip cavities 
remain. 
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Fig.   51       Photograph of the cavitating hydrofoil and support apparatus. 
The black covering over the supporting strut adjacent to the 
foil is the waterproofing for the balance shown in Fig.   4. 
The mean angle of attack shown is 16  . 
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Fig.   A-l      The coordinate system used to calculate planing loads. 
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